首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
题目 平面上点P(x,y)满足logr(2x-y) logr(2x y)=0.则|3x-y|的最小值为_________。  相似文献   

2.
一些代数不等式,用代数方法证明是较困难的。但若根据题设条件,构造出特殊的几何图形,运用几何方法。往往会使问题得到直观巧妙的证明。下面介绍构造几种特殊图形证明代数不等式,以供读者参考。例1.正数a、b、c、A、B、C满足条件a+A=b+B=c+C=k。求证aB+bC+cA相似文献   

3.
不等式的证明问题是高考和各种数学竞赛的热点问题之一.一般的证明方法有:运用均值不等式或柯西不等式;数学归纳法;放缩或裂项化成可求和(积)的数列证明和式(积式)等等.文[1]运用抽屉原理证明一些含有三个变元的不等式,文[2]介绍了一种构造不等式证明数列和式、积式的方法.阅读之后深受启发,本文对某些不等  相似文献   

4.
根据欲证不等式的特征,巧妙构造函数,利用函数的单调性、奇偶性等性质,使不等式获得简捷证明。  相似文献   

5.
不等式证明问题需要较强的观察和代数变形能力,技巧性强,没有常规套路,难度大.在日常学习中,我们会发现很多不等式证明问题需要进行转化,转变思想,要有较强的数学思维能力,使复杂的问题简单化。很多不等式问题都可以应用函数思想进行分析和解决,本文归纳几个构造函数证明不等式的基本类型,与读者交流.  相似文献   

6.
证明不等式的方法有很多,其中利用函数来证明是重要方法之一,这种方法的关键是构造适当的函数,再利用函数的性质来证明.而怎样构造适当的函数常常是因题而异的,本文就此归纳了构造函数的几种方法供大家参考.1.特征构造法由待证不等式的结构特征直接构造函数.  相似文献   

7.
证明形如a1 a2 … an≥f(n)的不等式,通常是用数学归纳法,但若将f(n)看做是一个数列{bn}的前n项和,则可通过证明an≥bn进而证明a1 a2 … an≥b1 b2 … bn=f(n)成立.  相似文献   

8.
构造三角形证明不等式,使数、式、形巧妙地结合在一起,别具风采,本文想就对巧构三角形证明的不等式作出分析、解答,以期达到激发学生创造思维能力的目的。 例1 若α为锐角,求证:  相似文献   

9.
构造函数解题能拓宽思路,加深对函数概念及其性质的理解,且对有些较复杂的问题起到化繁为简、化难为易的作用.下面仅从三个方面举例说明构造函数证明不等式的应用,以飨读者.一、构造单调函数例1.若x∈(-∞,-1〕U〔3,∞),|P|<2,求证:x~2 Px 1>2x P证明:构造函数 f(P)=x~2 Px 1-(2x P)=P(x-1) (x-1)~2i)当x∈〔3, ∞)时,x-1>0,∴f(P)在P∈(-2,2)上是增函数,∴f(P)>  相似文献   

10.
不等式(组)是解决数学问题和实际问题的有力工具,构造一次不等式(组)是一种重要的解题策略.不少数学问题表面上看似乎与不等式(组)无关,但若仔细考查其条件特征,挖掘不等量关系,均可构造出一次不等式(组)来解.下面就义教八年级同学能够接受的知识范围,分类例举赛题,介绍一些常用的构造途径,快捷解决求值、最值、范围、多边形内角度数、解方程(组)等问题,以提高同学们对数学思想方法的应用能力。  相似文献   

11.
在某些不等式的证明中,恰当地引入参数参与运算,往往思路清晰,方法简捷.本文结合例题作一介绍.[第一段]  相似文献   

12.
分式不等式千姿百态,证法甚多.本文揭示一种最简洁的方法:构造恒等式法. 定理设S,T∈R,S=T+Q,  相似文献   

13.
不等式 (组 )是解决数学问题和实际问题的有力工具 ,构造一次不等式 (组 )是一种重要的解题策略 .不少数学问题表面上看似乎与不等式 (组 )无关 ,但若仔细考查其条件特征 ,挖掘不等量关系 ,均可构造出一次不等式 (组 )来解 .下面就义教八年级同学能够接受的知识范围 ,分类例举赛题 ,介绍一些常用的构造途径 ,快捷解决求值、最值、范围、多边形内角度数、解方程 (组 )等问题 ,以提高同学们对数学思想方法的应用能力 .一、利用已知非负数构造例 1  (第十四届江苏省初中赛题 )已知三个非负数 a,b,c满足 3 a + 2 b + c=5  ( 1)和2 a + b -3 c …  相似文献   

14.
不等式的证明方法灵活多变,技巧性强,对于有些不等式的证明,如用常规方法去处理难以奏效.甚至无从着手,此时可根据题设条件和不等式的结构特征,通过观察、对照、分析、联想,恰当的构造出函数、数列、平面曲线或空间图形等数学模型去证明不等式,则以构思新颖、方法便捷,给人以豁然开朗之感.以下举例说明.  相似文献   

15.
巧解三棱锥     
在立体几何教学中,讲完锥体体积后,总结归纳时,得到三棱锥的特殊性:一、任何一个面都可作为底面;二、过任一顶点的截面都是三角形;三、相对棱都是异面直线。在解题过程中,只要注意三棱锥的特殊性,很多是题目就可迎刃而解了。 例1:三棱锥的三个侧面互相垂直,它们的面积分别为6m~2、4m~2和3m~2,求它的体积。(高级中学课本《立体几何》习题十三第六题) 分析:解此题时,若将三棱锥原底面作底面,难度较大。若将任一侧面作为底面,此题就较简单  相似文献   

16.
某些不等式,如果囿于从代数角度来考察证明,会显得有些棘手.然而只要细心观察、类比联想,就可以发现这些问题通过构造正方形,借助正方形的几何性质来证明,不仅能够使命题的解答过程简洁直观,而且有助于培养学生的创造性思维能力,下面用实例来说明.10,求证:x-2y≤200.(1987年列宁格勒数学竞赛题)证设a=x,b=y,结合条件有a、b∈R+,且a=b+10,如图,构造边长为a=b+10的正方形,从而由图可直观地看出a2-2b2≤200,因此x-Zy≤200.例2设x、y∈R,且0≤x≤1,0≤y≤1,求证:x/(1 y) (1988年列宁格勒数学竞赛题).…  相似文献   

17.
不等式的证明方法多且灵活,构造法是其中较重要的一种方法,构造法解题具有较大的灵活性和创造性.本文仅就如何构造三角形来证明不等式作一些探讨. 1.从不等式的结构特征出发,构造三角形例1 已知x、y、z均为正数.求证: 分析:注意到三个被开方式均为二元二次  相似文献   

18.
<正>函数的单调性与不等式问题密切相关.用函数的单调性解不等式问题,首要任务是关注其代数式的结构.以单调增函数为例,其核心结构是:若α>β, 则f(α)>f(β);反之,若f(α)>f(β),则α>β.这个代数结构有两个显著特征:(1)条件与结论都是不等式;(2)不等式两边所含的字母或代数式的结构是一致的.因此,遇到具有上述两个特征的不等式问题,就可以构造函数,并利用其单调性解题.本文试举几例,以飨读者.  相似文献   

19.
高中数学第二册(下B)中,与组合有关的恒等式的证明,是用与组合、二项式定理有关的概念、公式、性质和定理证明的.而一些组合恒等式的证明常因其结构复杂、运算量大,较难找到切人点而使人生畏.其实如果我们能根据恒等式的特征,利用组合数的意义,将其进行必要的“联想——转化”,巧妙运  相似文献   

20.
基本不等式是解决最值问题的重要工具。“一正、二定、三相等”是运用基本不等式的前提条件,缺一不可。很多最值问题的求解方法往往具有一定的隐蔽性,需要进行适当的变形方能使用基本不等式。本人对近年来的相关高考题进行归纳,主要有如下6种变形技巧,供同学们参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号