首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Particular social aspects of the nature of science (NOS), such as economics of, and entrepreneurship in science, are understudied in science education research. It is not surprising then that the practical applications, such as lesson resources and teaching materials, are scarce. The key aims of this article are to (a) synthesize perspectives from the literature on economics of science (EOS), entrepreneurship, NOS, and science education in order to have a better understanding of how science works in society and (b) illustrate how such a synthesis can be incorporated in the practice of science education. The main objectives of this article are to (1) argue for the role and inclusion of EOS and entrepreneurship in NOS and re-define entrepreneurship in the NOS context; (2) explore the issues emerging in the “financial systems” of the Family Resemblance Approach (FRA) to NOS and propose the inclusion of contemporary aspects of science, such as EOS and entrepreneurship, into NOS; (3) conceptualize NOS, EOS, and entrepreneurship in a conceptual framework to explain how science works in the society; and (4) transform the theoretical knowledge of how science operates in society into practical applications for science teaching and learning. The conceptual framework that we propose illustrates the links between State, Academia, Market and Industry (the SAMI cycle framework). We suggest practical lesson activities to clarify how the theoretical discussions on the SAMI cycle framework can be useful and relevant for classroom practice. In this article, science refers to physics, chemistry, and biology. However, we also recommend an application of this framework to other sciences to reveal their social-institutional side.  相似文献   

2.
Much has been written about how effective nature of science instruction must have a significant explicit and reflective character. However, while explicitly drawing students’ attention to NOS issues is crucial, learning and teaching the NOS are essentially matters of conceptual change. In this article, how people learn and learners’ responses to the demands of conceptual change are used to explain how students may exit from instruction with fundamental NOS misconceptions left intact or only slightly altered, despite being explicitly and reflectively attended to more accurate ideas. The purpose of this concept paper is to set within a theoretical framework of learning, and bring some coherence to, what has rapidly become a large body of empirical research regarding effective NOS instruction. Toward these two ends, this article: (1) illustrates how a conceptual change framework can be used to account for learners’ responses to NOS instruction and what teachers might do to promote understanding NOS and transferring it to new contexts; (2) characterizes popularly advocated NOS instructional approaches along a continuum marked by increasing connection to the workings of science, and decreased ability to dismiss NOS lessons as extraneous to authentic science; and (3) proposes that NOS instruction would likely be more effective if teachers deliberately scaffolded classroom experiences and students’ developing NOS understanding back and forth along the continuum.  相似文献   

3.
This study explored whether early childhood preservice teachers' concerns about teaching nature of science (NOS) and their intellectual levels influenced whether and how they taught NOS at the preschool and primary (K‐3) levels. We used videotaped classroom observations and lesson plans to determine the science instructional practices at the preschool and primary levels, and to track whether and how preservice teachers emphasized NOS. We used the Stages of Concern Questionnaire (SOCQ) pre‐ and postinternship to determine concerns about NOS instruction, and the Learning Context Questionnaire (LCQ) to determine intellectual levels. We found that neither concerns about teaching NOS nor intellectual level were related to whether and how the preservice teachers emphasized NOS; however, we found that all preservice early childhood teachers began their internships with NOS concern profiles of “worried.” Two preservice teachers' NOS concerns profiles changed as a result of their internships; one to “cooperator” and one to “cooperator/improver.” These two preservice teachers had cooperating teachers who were aware of NOS and implemented it in their own science instruction. The main factors that hindered or facilitated teaching NOS for these preservice teachers were the influence of the cooperating teacher and the use of the science curriculum. The preservice teacher with the cooperating teacher who understood and emphasized NOS herself and showed her how to modify the curriculum to include NOS, was able to explicitly teach NOS to her students. Those in classrooms whose cooperating teachers did not provide support for NOS instruction were unable to emphasize NOS. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:213–233, 2010  相似文献   

4.

This study reports the participation of 13 secondary science teachers in informal support networks and how that participation was associated with their nature of science (NOS) teaching practices 2 to 5 years after having graduated from the same science teacher education program. The nine teachers who participated in informal support networks taught the NOS at high/medium levels, while the four non-participating teachers taught the NOS at low levels. The nine high/medium NOS implementation teachers credited the informal support networks for maintaining/heightening their sense of responsibility for teaching NOS and for helping them navigate institutional constraints that impede effective NOS instruction. Several high/medium NOS instruction implementers initially struggled to autonomously frame and resolve the complexities experienced in schools and thus drew from the support networks to engage in more sophisticated forms of teacher decision-making. In contrast, the NOS pedagogical decisions of the four teachers not participating in support networks were governed primarily by the expectations and constraints experienced in their schools. Implications of this study include the need for reconsidering the structure of teacher mentorship programs to ensure they do not promote archaic science teaching practices that are at odds with reform efforts in science education.

  相似文献   

5.
Establishing literacy in science is often linked to building knowledge about the Nature of Science (NOS). This paper describes and evaluates an inservice program designed to build elementary teachers’ understanding of NOS and an awareness of how NOS impacts science classroom instruction. Data sources consisted of surveys, action research plan documentation and classroom observations. Program participants tended to demonstrate some gains in understanding more about NOS and they linked positive experiences in the program to the explicit and activity-based NOS instruction provided. Yet, participation in the professional development project might not have been equally beneficial for all teachers. The understanding of NOS may have been restricted to certain NOS aspects, and the demonstration of the participants’ understanding of NOS may have been short-lived with a somewhat limited impact on sustainable, long-term NOS-based classroom instruction. Implications for designing NOS related professional development programs and suggestions for improvements to further develop teacher understanding of NOS are discussed.  相似文献   

6.
Scholars proved nature of science (NOS) has made certain contributions to science teaching and learning. Nonetheless, what, how and how much NOS should be integrated in the science curriculum of each country cannot be a benchmark, due to the influence of culture and society. Before employing NOS in a new context, it should be carefully studied. In assessing views of NOS in Vietnam, a developing country with Eastern culture where the NOS is not consider a compulsory learning outcome, there are several issues that researchers and educators should notice to develop an appropriate instrument that can clearly exhibit a NOS view of Vietnamese. They may include: time for the survey; length, content, type, and terms of the questionnaire; Vietnamese epistemology and philosophy; and some other Vietnamese social and cultural aspects. The most important reason for these considerations is that a Vietnamese view of NOS and NOS assessment possibly differs from the Western ideas due to the social and cultural impact. As a result, a Western assessment tool may become less effective in an Eastern context. The suggestions and implications in this study were derived from a prolonged investigation on Vietnamese science teacher educators and student teachers of School of Education, at Can Tho University, a State University in Mekong Delta region, Vietnam.  相似文献   

7.
This study explored third-grade elementary students' conceptions of nature of science (NOS) over the course of an entire school year as they participated in explicit-reflective science instruction. The Views of NOS-D (VNOS-D) was administered pre instruction, during mid-school year, and at the end of the school year to track growth in understanding over time. The Young Children's Views of Science was used to describe how students conversed about NOS among themselves. All science lessons were videotaped, student work collected, and a researcher log was maintained. Data were analyzed by a team of researchers who sorted the students into low-, medium-, and high-achieving levels of NOS understandings based on VNOS-D scores and classwork. Three representative students were selected as case studies to provide an in-depth picture of how instruction worked differentially and how understandings changed for the three levels of students. Three different learning trajectories were developed from the data describing the differences among understandings for the low-, medium-, and high-achieving students. The low-achieving student could discuss NOS ideas, the medium-achieving student discussed and wrote about NOS ideas, the high-achieving student discussed, wrote, and raised questions about NOS ideas.  相似文献   

8.
The Nature of Science in Science Education: An Introduction   总被引:10,自引:4,他引:6  
  相似文献   

9.
Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators’ conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to pre-service science teachers. A total of 20 NOS elements were considered by the Chinese science teacher educators to be important ideas to be taught. It was also found that among these educators, whether focusing on the classical or contemporary NOS elements in NOS instruction was a prominent controversy. After explaining the criteria for differentiating between classical and contemporary NOS elements, this paper reports the specific NOS elements suggested by Chinese science teacher educators in this study. Afterward, it describes how all educators in this study were categorized in term of NOS content taught by them to pre-service science teachers. In the end, it discusses three factors influencing the decision on NOS content to be taught, i.e., view of the concept of NOS itself, vision of teaching NOS, and belief in general philosophy.  相似文献   

10.
Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a lack of systematic investigations, which clarify the relations between NOS and science content learning. In this paper, we present the results of a study, conducted to investigate how NOS understanding relates to students’ acquisition of a proper understanding of the concept of energy. A total of 82 sixth and seventh grade students received an instructional unit on energy, with 41 of them receiving generic NOS instruction beforehand. This NOS instruction, however, did not result in students having higher scores on the NOS instrument. Thus, correlational analyses were performed to investigate how students’ NOS understanding prior to the energy unit related to their learning about science content. Results show that a more adequate understanding of NOS might relate to students’ perspective on the concept of energy and might support them in understanding the nature of energy as a theoretical concept. Students with higher NOS understanding, for example, seemed to be more capable of learning how to relate the different energy forms to each other and to justify why they can be subsumed under the term of energy. Further, we found that NOS understanding may also be related to students’ approach toward energy degradation—a concept that can be difficult for students to master—while it does not seem to have a substantive impact on students’ learning gain regarding energy forms, transformation, or conservation.  相似文献   

11.
Although the goal of developing school students’ understanding of nature of science (NOS) has long been advocated, there is still a lack of research that focuses on probing how science teachers, a kind of major stakeholder in NOS instruction, perceive the values of teaching NOS. Through semi-structured interviews, this study investigated the views of 15 Hong Kong in-service senior secondary science teachers about the values of teaching NOS. These values as perceived by the teachers fall into two types. The first type is related to students’ learning of science in the classroom and involves: (i) facilitating the study of subject knowledge, (ii) increasing the interest in learning science, (iii) supporting the conduct of scientific inquiry, (iv) meeting the needs of public examinations, and (v) fulfilling the requirement of learning science. The second type goes beyond learning science and includes (i) developing thinking skills, (ii) cultivating scientific ethics in students, and (iii) supporting the participation in public decisions on socioscientific issues. Although rich relationships were perceived by these teachers between NOS instruction and students’ learning of science, few values were stated from broad social and cultural perspectives. Suggestions are made about developing teachers’ views of the values of teaching NOS so as to influence their intention of teaching it.  相似文献   

12.
A recent framework on nature of science (NOS) is the Family Resemblance Approach (FRA). FRA presents NOS as a cognitive-epistemic and social-institutional system with a set of categories: aims and values, scientific methods, scientific practices, scientific knowledge and social-institutional aspects of science. Although FRA has been problematised philosophically and its implications for science education have been considered by science educators, its empirical adaptations in science education are limited. In order to illustrate the educational adaptations of FRA, we refer to Reconceptualised Family Resemblance Approach to Nature of Science or RFN. We present a study based on a funded pre-service science teacher education project whose aim was to design, implement and evaluate the impact of RFN strategies. Fifteen pre-service teachers participated in a 14-week teacher education intervention that infused RFN. A 70-item questionnaire was designed to investigate the outcomes of the teacher education intervention. Individual interviews with pre-service teachers were also conducted. Quantitative and qualitative data analysis suggest that the teacher education intervention had an overall significant impact on pre-service teachers’ views of NOS. The paper contributes to the understanding of how NOS can be incorporated in science teacher education using a new orientation to NOS based on FRA.  相似文献   

13.
Science education researchers have long advocated the central role of the nature of science (NOS) for our understanding of scientific literacy. NOS is often interpreted narrowly to refer to a host of epistemological issues associated with the process of science and the limitations of scientific knowledge. Despite its importance, practitioners and researchers alike acknowledge that students have difficulty learning NOS and that this in part reflects how difficult it is to teach. One particularly promising method for teaching NOS involves an explicit and reflective approach using the history of science. The purpose of this study was to determine the influence of a historically based genetics unit on undergraduates’ understanding of NOS. The three-class unit developed for this study introduces students to Mendelian genetics using the story of Gregor Mendel’s work. NOS learning objectives were emphasized through discussion questions and investigations. The unit was administered to undergraduates in an introductory biology course for pre-service elementary teachers. The influence of the unit was determined by students’ responses to the SUSSI instrument, which was administered pre- and post-intervention. In addition, semi-structured interviews were conducted that focused on changes in students’ responses from pre- to post-test. Data collected indicated that students showed improved NOS understanding related to observations, inferences, and the influence of culture on science.  相似文献   

14.
Understanding nature of science (NOS) is considered critical to the development of students’ scientific literacy. However, various studies have shown that a large number of elementary and secondary science teachers do not possess an adequate understanding of NOS. This study investigated how elementary teachers’ understanding of NOS was impacted through a 1-year professional development program in Chile that included NOS instruction as a theme throughout two types of mini-courses in the program. Twelve teachers attended a 1-year development program focused on improving teacher content knowledge and included the instruction of NOS embedded in two self-contained NOS mini-courses (36 h) and two lessons (3 h each) within five science content mini-courses (30 h). The Views of NOS (version D+) questionnaire and interviews were used to assess teachers’ understanding of NOS at the beginning (January) and end of the program (December). Elementary teachers’ understanding of the creative, inferential, and tentative aspect of NOS showed improvement. According to the teachers’ perceptions, the most significant activities for improving their NOS understanding were decontextualized activities in both types of mini-courses (self-contained NOS and science content mini-courses). The implications for professional development programs are also discussed.  相似文献   

15.
16.
The nature of science (NOS) has become a central goal of science education in many countries. This study sought an understanding of the extent to which a nature of science course (NOSC), designed according to the conceptualization of pedagogical content knowledge (PCK) for teaching nature of science (NOS), affects in-service science teachers’ understanding and learning of NOS, and their orientations towards teaching it. A qualitative research approach was employed as a research methodology, drawing upon pre- and post-instruction NOS questionnaires, field notes, and in-service teachers’ weekly journal entries and assignments. Open-ended NOS questionnaires, used to assess participants’ understandings of NOS, were analysed and categorized as either informed, partially informed and naive. Other qualitative data were analysed through an inductive process to identify ways in-service teachers engaged and learned in the NOSC. The results indicate that at the beginning of the course, a majority of the in-service science teachers held naive understandings of NOS, particularly with respect to the definition of science, scientific inquiry, and differences between laws and theories. They viewed implicit project-based science and science process skills as goals of NOS instruction. By engaging in the course, the in-service science teachers developed an understanding of NOS and orientations to teaching NOS based on various elements, especially reflective and explicit instruction, role modelling, and content- and non-content embedded instruction. The aim of this study is to help science teacher educators, consider how to support and develop science teachers’ understandings of NOS while being mindful of PCK for NOS, and develop methods for teaching NOS frameworks.  相似文献   

17.
This study investigates the proximal and distal images of the nature of science (NOS) that A‐level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the NOS and the nature of their chemistry laboratory work were elicited through students' responses to an open‐ended questionnaire and semistructured interviews. The results suggest that students build some understandings of the NOS from their participation in laboratory work. Students' proximal NOS understandings appear to build into and interact with their understandings of the nature and practice of professional science. This interaction appears to be mediated by the nature of instruction. It is posited that each student's conceptual ecological system is replete with interactions, which govern attenuation of proximal understandings into distal images. Methodologically, the study illustrates how students' laboratory work–based proximal and distal images of the NOS can be identified and extracted through analyzing and interpreting their responses to protocols. Implications for A‐level Chemistry instruction and curriculum development are raised. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 127–149, 2006  相似文献   

18.
This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following questions: (1) What do teachers talk about when asked general questions about their pedagogy and NOS pedagogy and (2) what qualitative differences, if any, exist within variables across teachers of varying NOS implementation levels? Evidence derived from these teachers’ reflections indicated that self-efficacy and perceptions of general importance for NOS instruction were poor indicators of NOS implementation. However, several factors were associated with the extent that these teachers implemented NOS instruction, including the utility value they hold for NOS teaching, considerations of how people learn, understanding of NOS pedagogy, and their ability to accurately and deeply self-reflect about teaching. Notably, those teachers who effectively implemented the NOS at higher levels value NOS instruction for reasons that transcend immediate instructional objectives. That is, they value teaching NOS for achieving compelling ends realized long after formal schooling (e.g., lifelong socioscientific decision-making for civic reasons), and they deeply reflect about how to teach NOS by drawing from research about how people learn. Low NOS implementers’ simplistic notions and reflections about teaching and learning appeared to be impeding factors to accurate and consistent NOS implementation. This study has implications for science teacher education efforts that promote NOS instruction.  相似文献   

19.
This study examines Chinese pre-service teachers’ (N?=?30) views on the nature of science (NOS) and how Chinese culture influences their views. Participants were from two teachers’ universities in eastern China. As an exploratory and interpretive study, a scenario-based interview approach was adopted. The results indicated that the participants held unique views about the five key aspects of NOS. Many participants have alternative and contemporary views of NOS, but few possess classical views. In fact, teachers adopted features of the Confucian Doctrine of the Mean either consciously or unconsciously to account for their views of NOS. This research reflects that the Doctrine of the Mean affected Chinese teachers’ views of NOS, making them rather deficient in their understandings of classical NOS. Based on empirical data, it is argued that science teacher training in China should focus on the content and objectives of classical NOS, rather than just teaching contemporary views of NOS. Taking Chinese culture into consideration, science teacher education in China cannot entirely import the strategies of teaching the classical views of NOS from the developed world, but should develop, design and contextualize local strategies that are suitable for the training of Chinese science teachers. Some issues for further investigation of learners’ views of NOS in non-Western contexts are suggested as implications from this study.  相似文献   

20.
The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein’s idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein’s generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola’s FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of “Reconceptualized FRA-to-NOS (RFN)” to refer to Erduran and Dagher’s FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they underemphasize science as a social-institutional system. The comparison analysis shows results such as the “scientific ethos” category being mentioned by the Irish curriculum while “social organizations and interactions” category being mentioned by the Turkish curriculum. In all documents, there was no overall coherence to NOS as a holistic narrative that would be inclusive of the various RFN categories simultaneously. The article contributes to the framing of NOS from a family resemblance perspective and highlights how RFN categories can be used as analytical tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号