首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
2.
A national curriculum comprising statements of attainment at different levels must be underpinned by some idea of “progression” in learning. Questions arise as to the nature and meaning of progression. To gain a deeper insight into how children progress in their understanding of science, this research involves the construction and testing of a hypothetical learning sequence for the topic of forces. This interim report explains how children aged 7 to 13 are being interviewed to explore their explanations of phenomena involving forces. These explanations will be mapped onto the sequence to provide a multi-dimensional model of progression. Specializations: assessment, curriculum development. Specializations: assessment, investigations in science, progression in learning science.  相似文献   

3.
Argumentation is fundamental to science education, both as a prominent feature of scientific reasoning and as an effective mode of learning—a perspective reflected in contemporary frameworks and standards. The successful implementation of argumentation in school science, however, requires a paradigm shift in science assessment from the measurement of knowledge and understanding to the measurement of performance and knowledge in use. Performance tasks requiring argumentation must capture the many ways students can construct and evaluate arguments in science, yet such tasks are both expensive and resource-intensive to score. In this study we explore how machine learning text classification techniques can be applied to develop efficient, valid, and accurate constructed-response measures of students' competency with written scientific argumentation that are aligned with a validated argumentation learning progression. Data come from 933 middle school students in the San Francisco Bay Area and are based on three sets of argumentation items in three different science contexts. The findings demonstrate that we have been able to develop computer scoring models that can achieve substantial to almost perfect agreement between human-assigned and computer-predicted scores. Model performance was slightly weaker for harder items targeting higher levels of the learning progression, largely due to the linguistic complexity of these responses and the sparsity of higher-level responses in the training data set. Comparing the efficacy of different scoring approaches revealed that breaking down students' arguments into multiple components (e.g., the presence of an accurate claim or providing sufficient evidence), developing computer models for each component, and combining scores from these analytic components into a holistic score produced better results than holistic scoring approaches. However, this analytical approach was found to be differentially biased when scoring responses from English learners (EL) students as compared to responses from non-EL students on some items. Differences in the severity between human and computer scores for EL between these approaches are explored, and potential sources of bias in automated scoring are discussed.  相似文献   

4.
In recent years, there has been a strong push to transform STEM education at K-12 and collegiate levels to help students learn to think like scientists. One aspect of this transformation involves redesigning instruction and curricula around fundamental scientific ideas that serve as conceptual scaffolds students can use to build cohesive knowledge structures. In this study, we investigated how students use mass balance reasoning as a conceptual scaffold to gain a deeper understanding of how matter moves through biological systems. Our aim was to lay the groundwork for a mass balance learning progression in physiology. We drew on a general models framework from biology and a covariational reasoning framework from math education to interpret students' mass balance ideas. We used a constant comparative method to identify students' reasoning patterns from 73 interviews conducted with undergraduate biology students. We helped validate the reasoning patterns identified with >8000 written responses collected from students at multiple institutions. From our analyses, we identified two related progress variables that describe key elements of students' performances: the first describes how students identify and use matter flows in biology phenomena; the second characterizes how students use net rate-of-change to predict how matter accumulates in, or disperses from, a compartment. We also present a case study of how we used our emerging mass balance learning progression to inform instructional practices to support students' mass balance reasoning. Our progress variables describe one way students engage in three dimensional learning by showing how student performances associated with the practice of mathematical thinking reveal their understanding of the core concept of matter flows as governed by the crosscutting concept of matter conservation. Though our work is situated in physiology, it extends previous work in climate change education and is applicable to other scientific fields, such as physics, engineering, and geochemistry.  相似文献   

5.
In general, mathematical representations such as formulae, numbers, and graphs are the inseparable components in science used to better describe or explain scientific phenomena or knowledge. Regardless of their necessity and benefit, science seems to be difficult for some students, as a result of the mathematical representations and problem solving used in scientific inquiry. In this regard, several studies have attributed students’ decreasing interest in science to the presence of these mathematical representations. In order to better understand student learning difficulties caused by mathematical components, the current study investigates student understanding of a familiar science concept and its mathematical component (pH value and logarithms). Student responses to a questionnaire and a follow-up interview were examined in detail. “Measure” and “concentration” were key criteria for students’ understanding of pH values. In addition, only a few students understood logarithms on a meaningful level. According to students’ understanding of scientific phenomena and mathematical structures, five different student models and the critical features of each type were identified. Further analysis revealed the existence of three domains that characterize these five types: object, operation, and function. By suggesting the importance of understanding scientific phenomena as a “function,” the current study reveals what needs to be taught and emphasized in order to help students obtain a level of scientific meaning that is appropriate for their grade.  相似文献   

6.
The implementation of science reform must be viewed as a systems-level problem and not just focus on resources for teachers and students. High-capacity instructional leadership is essential for supporting classroom science instruction. Recent reform efforts include a shift from learning about science facts to figuring out scientific phenomena in which students use science practices as they build and apply disciplinary core ideas. We report findings from a research study on professional development (PD) to support instructional leaders' learning about the science practices. After participating in the PD, the instructional leaders' familiarity with and leadership content knowledge of the science practices significantly improved. Initially, principals used their understandings from other disciplines and content neutral visions of classrooms to make sense of science instruction. For example, they initially used their understandings of models and argument from ELA and math to make sense of science classroom instruction. Furthermore, some principals focused on content neutral strategies, like a clear objective. Over the course of the PD workshops, principals took up the language of the science practices in more nuanced and sophisticated ways. Principals' use of the language of the science practices became more frequent and shifted from identifying or defining them to considering quality and implementation in science classrooms. As we design tools to support science, we need to consider instructional leaders as important stakeholders and develop resources to specifically meet their needs. If the science feels too unfamiliar or intimidating, principals may avoid or reframe science reform efforts. Consequently, it is important to leverage instructional leaders' resources from other disciplines and content neutral strategies as bridges for building understanding in science. We argue that the science practices are one potential lever to engage in this work and shift instructional leaders' understandings of science instruction.  相似文献   

7.
We describe efforts toward the development of a hypothetical learning progression (HLP) for the growth of grade 7–14 students' models of the structure, behavior and properties of matter, as it relates to nanoscale science and engineering (NSE). This multi‐dimensional HLP, based on empirical research and standards documents, describes how students need to incorporate and connect ideas within and across their models of atomic structure, the electrical forces that govern interactions at the nano‐, molecular, and atomic scales, and information in the Periodic Table to explain a broad range of phenomena. We developed a progression from empirical data that characterizes how students currently develop their knowledge as part of the development and refinement of the HLP. We find that most students are currently at low levels in the progression, and do not perceive the connections across strands in the progression that are important for conceptual understanding. We suggest potential instructional strategies that may help students build organized and integrated knowledge structures to consolidate their understanding, ready them for new ideas in science, and help them construct understanding of emerging disciplines such as NSE, as well as traditional science disciplines. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:687–715, 2010  相似文献   

8.
We find ourselves at a time when the need for transformation in science education is aligning with opportunity. Significant science education resources, namely the Next Generation Science Standards (NGSS) and the Ambitious Science Teaching (AST) framework, need an intentional aim of centering social justice for minoritized communities and youth as well as practices to enact it. While NGSS and AST provide concrete guidelines to support deep learning, revisions are needed to explicitly promote social justice. In this study, we sought to understand how a commitment to social justice, operationalized through culturally sustaining pedagogy (Paris, Culturally sustaining pedagogies and our futures. The Educational Forum, 2021; 85, pp. 364–376), might shape the AST framework to promote more critical versions of teaching science for equity. Through a qualitative multi-case study, we observed three preservice teacher teams engaged in planning, teaching, and debriefing a 6-day summer camp in a rural community. Findings showed that teachers shaped the AST sets of practices in ways that sustained local culture and addressed equity aims: anchoring scientific study in phenomena important to community stakeholders; using legitimizing students' stories by both using them to plan the following lessons and as data for scientific argumentation; introducing local community members as scientific experts, ultimately supporting a new sense of pride and advocacy for their community; and supporting students in publicly communicating their developing scientific expertise to community stakeholders. In shaping the AST framework through culturally sustaining pedagogy, teachers made notable investments: developing local networks; learning about local geography, history, and culture; building relationships with students; adapting lessons to incorporate students' ideas; connecting with community stakeholders to build scientific collaborations; and preparing to share their work publicly with the community. Using these findings, we offer a justice-centered ambitious science teaching (JuST) framework that can deliver the benefits of a framework of practices while also engaging in the necessarily more critical elements of equity work.  相似文献   

9.
The purpose of this study was to explore the relationships of students, teachers, and learning environment variables to science attitude. Data were collected from fourth, seventh, and ninth grade students and their science teachers. Variables found to be consistently related to science attitude of classes at all grade levels were (a) sense of the importance of science, (b) student fatalism, (c) teacher quality, and (d) a host of learning environment variables. Implications for teaching practices and for future research were offered.  相似文献   

10.
The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it is the standard method for the development of learning progressions. The learning progression was informed by interviews of 39 middle and high school students from 5 schools in the Western USA using QR assessments. To inform the lower anchor, intermediate levels, and upper anchor of achievement for the QR learning progression, an extensive review of the literature on QR was conducted. A learning progression framework was then hypothesized. To confirm the framework, three QR assessments within the context of environmental literacy were constructed. The interviews were conducted using these QR assessments. The results indicated that students do not actively engage in quantitative discourse without prompting and display a low level of QR ability. There were no consistent increases on the QR learning progression either across grade levels or across scales of micro/atomic, macro, and landscape.  相似文献   

11.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

12.
Making is a rapidly emerging form of educational practice that involves the design, construction, testing, and revision of a wide variety of objects, using high and low technologies, and integrating a range of disciplines including art, science, engineering, and mathematics. It has garnered widespread interest and support in both policy and education circles because of the ways it has been shown to link science learning to creativity and investigation. Making has taken root in out-of-school settings, such as museums, science festivals, and afterschool and library programmes; and there is now growing interest from primary and secondary educators in how it might be incorporated into the classroom. Making expands on traditions associated with Technology Education and Design-Based Learning, but differs in ways that can potentially broaden participation in science and STEM learning to include learners from communities historically underrepresented in STEM fields. STEM-Rich Making is centrally organised around design and engineering practices, typically integrating digital tools and computational practices, and positions scientific and mathematical concepts and phenomena as the materials for design. This paper takes a critical view of the claims about Making as a productive form of science teaching and learning, and reviews the current research literature’s substantiation of the ways in which Making supports students’ agency, promotes active participation in science and engineering practices, and leverages learners’ cultural resources.  相似文献   

13.
Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students’ baseline understanding of and their reasoning about plant–ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students’ ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant–abiotic relationships, a much smaller group reasoned about plant–abiotic–animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development.  相似文献   

14.
15.
The purpose of this study was to understand the impact of an apprenticeship program on high school students’ understanding of the nature of scientific inquiry. Data related to seventeen students’ understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic scientific research helped the participants to develop competency in experimentation methods it had limited impact on participants’ learning of the implicit aspects of scientific inquiry and NOS. Discussion focuses on the importance of making the implicit assumptions of science explicit to the students in such authentic scientific inquiry settings through structured curriculum.  相似文献   

16.
The last two decades have witnessed the gradual implementation of integrated science curriculum at the junior secondary level in China. However, in most provinces of China, the implementation is not as successful as expected. Challenges were reported, yet without fine-grained investigation, with respect to science teachers' instruction on integrated science. In this study, we aim to detect major problems by investigating the instruction of integrated science at the secondary level. Classroom observation focused on the teacher and student verbal behavior, teachers' competency of instructional organization, their presentation of instructional content, and the organization of learning activities. Findings revealed that students were provided with limited opportunities for participating and engaging in learning as science teachers were dominant in classroom talk. Teachers emphasized on the integration of knowledge within one subject (within-subject knowledge), but not the integration of knowledge between subjects (cross-subject knowledge), resulting in the unsuccessful instruction of the integrative content. What is more, teachers were inadequately competent in designing and delivering science, technology and society content, scientific inquiry and scientific experiments, which also affected the quality of instruction on integrated science.  相似文献   

17.
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students?? engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.  相似文献   

18.
Ensuring that all students, including English language learners (ELLs) who speak English as a second language, succeed in science is more challenging with a shift towards learning through language-intensive science practices suggested by the Next Generation Science Standards (NGSS). Interactive visualization technologies have the potential to support science learning for all students, including ELLs, by providing explicit representations of unobservable scientific systems. However, whether and how such technologies can be beneficial for these underserved students has not been sufficiently investigated. In this study, we examine the short-term and long-term effects of interactive visualizations in improving linguistically diverse eighth-grade students’ understanding of properties of matter and chemical reactions during inquiry instruction. The results show that after interacting with the visualizations, both ELLs and non-ELLs showed significant improvement in their understanding of the target concepts at the molecular level on both the immediate test and the delayed test (3 months after the study). In particular, aligned with the goals of the NGSS, all students, including ELLs, were able to demonstrate their understanding of how energy and matter are involved in chemistry through developing molecular models, critiquing models, and constructing scientific explanations. This study shows the potential benefits of using interactive visualizations during inquiry instruction as a resource to help all students, including ELLs who are traditionally underserved in mainstream classrooms, develop a more coherent understanding of abstract concepts of molecular processes during chemical phenomena.  相似文献   

19.
20.
The purpose of this study was to determine the relationship between workplace learning and psychological variables, such as learning competency, motivation, curiosity, self-esteem and locus of control, and organizational variables, such as centralization of power, formality, merit system and communication. The studied population consisted entirely of workers in small and medium manufacturing businesses in Korea. Totally, 685 workers were sampled and 388 of them were used for the analysis. The level of workplace learning in small and medium manufacturing businesses was higher than the expected average. All the variables in this study had significant positive low or moderate relationships with workplace learning. Lastly, about 50% of the variance in workplace learning was explained by communication, learning competency, merit system, motivation, centralization of power and curiosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号