首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study examined the effects of a 6-week intermittent exercise training, at different intensities, on body composition, functional walking and aerobic endurance in overweight children. Forty-eight overweight children (age: 10.4 ± 0.9 years) were randomly assigned to either intervention or control group. Lower and higher intensity intermittent exercise groups (LIIE and HIIE) performed intermittent running three times a week. LIIE performed more intervals at a lower intensity [16 intervals at 100% of individual maximal aerobic speed (MAS), 8 minutes in total], and HIIE performed fewer intervals at a higher intensity (12 intervals at 120% of MAS, 6 minutes in total). Each interval consisted of a 15-second run at the required speed, followed by a 15-second passive recovery. After 6 weeks, HIIE had a significantly (p < 0.05) higher percentage reduction in sum of skinfolds (i.e. calf and triceps), and significantly (p < 0.05) fewer steps during the functional obstacle performance, as compared with LIIE and control group. Significant improvement (p < 0.05) was found in intermittent aerobic endurance for HIIE as compared to the control group. Higher intensity intermittent training is an effective and time-efficient intervention for improving body composition, functional walking and aerobic endurance in overweight children.  相似文献   

2.
This study examined the effects of different work - rest durations during 40 min intermittent treadmill exercise and subsequent running performance. Eight males (mean +/- s: age 24.3 +/- 2.0 years, body mass 79.4 +/- 7.0 kg, height 1.77 +/- 0.05 m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (nu-VO2max) was attained with passive recovery between each one. The work - rest ratio was constant at 1:1.5 with trials involving short (6:9 s), medium (12:18 s) or long (24:36 s) work - rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% nu-VO2max. After 40 min, mean exercise intensity was greater during the long (68.4 +/- 9.3%) than the short work - rest trial (54.9 +/- 8.1% VO2max; P < 0.05). Blood lactate concentration at 10 min was higher in the long and medium than in the short work - rest trial (6.1 +/- 0.8, 5.2 +/- 0.9, 4.5 +/- 1.3 mmol x l(-1), respectively; P < 0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work - rest trials (P < 0.05). Plasma glucose concentration was higher in the long and medium than in the short work - rest trial after 40 min of exercise (5.6 +/- 0.1, 6.6 +/- 0.2 and 5.3 +/- 0.5 mmol x l(-1), respectively; P < 0.05). No differences were observed between trials for performance time (72.7 +/- 14.9, 63.2 +/- 13.2, 57.6 +/- 13.5 s for the short, medium and long work - rest trial, respectively; P = 0.17), although a relationship between performance time and 40 min plasma glucose was observed (P < 0.05). The results show that 40 min of intermittent exercise involving long and medium work - rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work-rest duration.  相似文献   

3.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (V02) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine V02max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% V02max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% V02max, separated by 50 s of recovery at ~55% V02max. Significantly greater (P<0.05) peak power (intermittent vs continuous: 629 ± 199 vs 601 ± 204W) and average power (intermittent vs continuous: 328±39.0 vs 321 ±42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak V02, total V02 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

4.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (VO2) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine VO2max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% VO2max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% VO2max, separated by 50 s of recovery at approximately 55% VO2max. Significantly greater (P < 0.05) peak power (intermittent vs continuous: 629 +/- 199 vs 601 +/- 204 W) and average power (intermittent vs continuous: 328 +/- 39.0 vs 321 +/- 42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak VO2, total VO2 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

5.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

6.
This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake (VO2 max)) 47.0 ± 7 ml · kg · min(-1)) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l(-1)) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l(-1), respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

7.
The main purpose of this study was to evaluate running kinematic characteristics and foot strike patterns (FSP) during early and late stages of actual and common high-intensity intermittent training (HIIT): 5 × 2000 m with 120-s recovery between runs. Thirteen healthy, elite, highly trained male endurance runners participated in this study. They each had a personal record in the half-marathon of 70 ± 2.24 min, and each had a minimum experience of 4 years of training and competition. Heart rate (HR) and rate of perceived exertion (RPE) were monitored during HIIT. High levels of exhaustion were reached by the athletes during HIIT (HRpeak: 174.30 bpm; RPE: 17.23). There was a significant increase of HRpeak and RPE during HIIT; nevertheless, time for each run remained unchanged. A within-protocol paired t-test (first vs. last run) revealed no significant changes (≥ 0.05) in kinematics variables and FSP variables during HIIT. There were no substantial changes on kinematics and FSP characteristics in endurance runners after fatigue induced by a HIIT. Only the minimum ankle alignment showed a significant change. The author suggests that these results might be due to both the high athletic level of participants and their experience in HIIT.  相似文献   

8.
The purpose of this study was to investigate the effects of a high-intensity free-weight back-squat exercise on postural stability characteristics in resistance-trained males. Eighteen college-aged (mean ± SD: age = 22.9 ± 2.9 years; height = 175.8 ± 6.4 cm; mass = 86.3 ± 9.3 kg), resistance-trained males performed postural stability testing before and after completing five sets of eight repetitions of back-squat exercises at 80% of one-repetition maximum. A commercial balance testing device was used to assess sway index at pre- and at 0, 5, 10, 15 and 20 min post-exercise. Each balance assessment consisted of four, 20-s static stance conditions: eyes-open firm surface, eyes-closed firm surface, eyes-open soft surface and eyes-closed soft surface. Sway index was greater (= 0.001–0.020) at Post 0 than at all other time points. No differences (> 0.05) were observed between any other time phases. Sway index was greater (< 0.001) for eyes-closed soft surface than all other conditions. These findings revealed sway index for all conditions significantly increased following completion of the back-squat; however, sway index recovered within 5 min of exercise. Higher sway index values as a result of neuromuscular fatigue induced by a back-squat exercise may have performance and injury risk consequences to subsequent activities that rely on postural stability. However, these findings suggest balance impairments may recover in ~5 min following high-intensity lower body resistance exercise.  相似文献   

9.
ABSTRACT

Moderate-intensity continuous exercise (MICE) improves fat oxidation. High-intensity intermittent exercise (HIIE) is thought to have a greater potential for fat oxidation but it might be too demanding in the long term for patients. We hypothesized that an initial bout of HIIE could maximize fat oxidation during MICE and the following passive recovery. Eighteen healthy participants performed two acute isocaloric exercise sessions at random. MICE consisted of 45-min cycling at 50% of maximal aerobic power (Pmax). COMB began with five 1-min bouts of HIIE at Pmax (interspaced with 1-min recovery periods) followed by 35-min MICE. Gas exchange allowed substrate oxidation rate assessment.

Expressed as a % of energy expenditure, fat oxidation (%) increased during in the passive recovery following COMB (Recovery: 36.0 ± 19.4 vs 23.0 ± 20.3%; ES: 0.66; p < 0.0001). An initial bout of HIIE preceding a prolonged moderate-intensity exercise may potentiate fat oxidation during the following recovery. This might be relevant for health management of overweight/obese persons.  相似文献   

10.
The pre-event warm-up or “priming” routine for optimising cycling performance is not well-defined or uniform to a specific event. We aimed to determine the effects of varying the intensity of priming on 3 km cycling performance. Ten endurance-trained male cyclists completed four 3 km time-trials (TT) on four separate occasions, each preceded by a different priming strategy including “self-selected” priming and three intermittent priming strategies incorporating 10 min of constant-load cycling followed by 5 × 10 s bouts of varying relative intensity (100% and 150% of peak aerobic power, Wpeak, and all-out priming). The self-selected priming trial (379 ± 44 W) resulted in similar mean power during the 3 km TT to intermittent priming at 100% (376 ± 45 W; ?0.7%; unclear) and 150% (374 ± 48 W; ?1.5%, unclear) of Wpeak, but significantly greater than all-out priming (357 ± 45 W; ?5.8%, almost certainly harmful). Differences between intermittent and self-selected priming existed with regards to heart rate (6.2% to 11.5%), blood lactate (?22.9% to 125%) and VO2 kinetics (?22.9% to 8.2%), but these were not related to performance outcomes. In conclusion, prescribed intermittent priming strategies varying in intensity did not substantially improve 3 km TT performance compared to self-selected priming.  相似文献   

11.
In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; VO(2max) 55.5 ml x kg(-1) x min(-1), s = 5.8) undertook repeated sprints at 120% of the speed at which VO(2max) was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = 0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = - 0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

12.
Abstract

In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; [Vdot]O2max 55.5 ml · kg?1 · min?1, s = 5.8) undertook repeated sprints at 120% of the speed at which [Vdot]O2max was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = ?0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = ?0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

13.
14.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30 h) at 60% maximal oxygen uptake(VO2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22 ml.kg-1 body mass) in the first hour of the recovery interval (n=8) and 500 ml just before exercise, followed by 250 ml every 20 min during exercise in the first (n=9) and second exercise bouts (n=9). Timed unstimulated saliva samples were collected at 10 min before exercise, after 48-50 min of exercise and during the last 2 min of exercise, at 1 h post exercise, 2 h post exercise (first exercise bout only), and 18 h post exercise (second exercise bout only). Venous blood samples were taken 5 min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2 h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90 min cycling at 60% VO2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

15.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30?h) at 60% maximal oxygen uptake ([Vdot]O2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22?ml?·?kg?1 body mass) in the first hour of the recovery interval (n = 8) and 500?ml just before exercise, followed by 250?ml every 20?min during exercise in the first (n = 9) and second exercise bouts (n = 9). Timed unstimulated saliva samples were collected at 10?min before exercise, after 48?–?50?min of exercise and during the last 2?min of exercise, at 1?h post exercise, 2?h post exercise (first exercise bout only), and 18?h post exercise (second exercise bout only). Venous blood samples were taken 5?min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2?h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90?min cycling at 60% [Vdot]O2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

16.
Li TL  Gleeson M 《Journal of sports sciences》2004,22(11-12):1015-1024
The purpose of this study was to establish the effect of exercise at different times of day on saliva flow rate, immunoglobulin A (sIgA) concentration and secretion rate, and alpha-amylase activity, and to establish how these parameters change following a second exercise bout performed on the same day. In a counterbalanced design, eight male volunteers participated in three experimental trials separated by at least 4 days. On the trial with afternoon exercise only, the participants cycled for 2 h at 60% VO2max starting at 14:00 h. On the other two trials, participants performed either two bouts of exercise at 60% VO2max for 2 h (the first started at 09:00 h and the second started at 14:00 h) or a separate resting trial. Unstimulated saliva samples were obtained 10 min before exercise, after 58 - 60 min and during the last 2 min of exercise, and at 1 h and 2 h after exercise. Venous blood samples were taken 5 min before exercise and immediately after exercise for both bouts. Participants remained fasted between 23:00 h on the day before the trials and 18:00 h on the day of the trial. Circadian variations were found in sIgA concentration, which decreased with time from its highest value in the early morning to its lowest value in the evening, and salivary alpha-amylase secretion rate, which increased from its lowest value in the morning to its highest value in the late afternoon. Cycling at 60% VO2max for 2 h significantly decreased saliva flow rate, increased sIgA concentration and alpha-amylase activity, but did not influence sIgA secretion rate. Performing prolonged cycling at different times of day did not differentially affect the salivary and plasma hormonal responses in the short term. Performance of a second prolonged exercise bout elicited a greater plasma stress hormone response but did not appear to compromise oral immunity acutely. These findings also suggest that, in terms of saliva secretion, sIgA and alpha-amylase responses, a 3 h rest is enough to recover from previous strenuous exercise. During such exercise, sympathetic stimulation appears to be strong enough to inhibit saliva flow rate; however, it appears that it does not increase sIgA output via transcytosis.  相似文献   

17.
The aim of this study was to examine the effect of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. Nine semi-professional soccer players volunteered to participate in the study. Their mean (± sx ) age, body mass and maximal oxygen uptake were 20.2 ± 0.4 years, 73.2 ± 1.8 kg and 59.1 ± 1.3 ml·kg-1 ·min-1 respectively. The players were allocated to two randomly assigned trials: ingesting or abstaining from fluid intake during a 90 min intermittent exercise protocol (Loughborough Intermittent Shuttle Test:LIST).This test was designed to simulate the minimum physical demands faced by soccer players during a game. Before and immediately after performance of the test,the players completed a soccer skill test and a mental concentration test. Performance of the soccer skill test after the 'no-fluid' trial deteriorated by 5% (P ? 0.05),but was maintained during the fluid trial. Mean heart rate, perceived exertion, serum aldosterone, osmolality, sodium and cortisol responses during the test were higher (P ? 0.05) in the 'no-fluid' trial than in the fluid trial. The results of this study suggest that soccer players should consume fluid throughout a game to help prevent a deterioration in skill performance.  相似文献   

18.
The aim of this study was to examine the effect of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. Nine semi-professional soccer players volunteered to participate in the study. Their mean (+/- s(x)) age, body mass and maximal oxygen uptake were 20.2+/-0.4 years, 73.2+/-1.8 kg and 59.1+/-1.3 ml x kg(-1) min(-1) respectively. The players were allocated to two randomly assigned trials: ingesting or abstaining from fluid intake during a 90 min intermittent exercise protocol (Loughborough Intermittent Shuttle Test: LIST). This test was designed to simulate the minimum physical demands faced by soccer players during a game. Before and immediately after performance of the test, the players completed a soccer skill test and a mental concentration test. Performance of the soccer skill test after the 'no-fluid' trial deteriorated by 5% (P<0.05), but was maintained during the fluid trial. Mean heart rate, perceived exertion, serum aldosterone, osmolality, sodium and cortisol responses during the test were higher (P<0.05) in the 'no-fluid' trial than in the fluid trial. The results of this study suggest that soccer players should consume fluid throughout a game to help prevent a deterioration in skill performance.  相似文献   

19.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 +/- 0.18 degrees C, 36.8 +/- 0.18 degrees C and 33.6 +/- 0.25 degrees C respectively; mean +/- sx) (P< 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 +/- 22, 943 +/- 53 and 838 +/- 45 ml O2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 +/- 0.52, 8.09 +/- 0.57 and 7.90 +/- 0.38 mmol x l(-1) respectively) (P < 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 +/- 4.1, 48.3 +/- 2.7 and 46.9 +/- 6.2 s respectively) (P= 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

20.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 - 0.18°C, 36.8 - 0.18°C and 33.6 - 0.25°C respectively; mean - sx ) ( P ? 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 - 22, 943 - 53 and 838 - 45 ml O 2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 - 0.52, 8.09 - 0.57 and 7.90 - 0.38 mmol· l -1 respectively) ( P ? 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 - 4.1, 48.3 - 2.7 and 46.9 - 6.2 s respectively) ( P = 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号