首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
函数思想贯穿高中数学课程 ,历来是高考和竞赛考查的重点 ,利用函数思想来解题 ,可以增强学生知识的系统性以及函数与各类知识的相互联系和渗透 .本文将举几例介绍函数思想在非函数题中的渗透和应用 .一、函数思想在方程中的渗透例 1 若方程x2 +(m+2 )x+3 =0的两根均大于 1 ,求m的范围 .解 令f(x) =x2 +(m+2 )x +3 ,则由题设知f( 1 ) >0 ,-b2a>1 ,Δ >0 ,即m >-6,-m+22 >1 ,(m +2 ) 2 -1 2 >0 .解得 -6<m <-2 3 -2 .二、函数思想在不等式中的渗透例 2  ( 2 0 0 1年全国高考题 )已知 :i,m ,n是正整数 ,且 1 <i≤m <…  相似文献   

2.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

3.
平均不等式是解决最值问题的常用方法之一 ,但是利用它求最值必须满足“一正、二定、三相等”3个基本条件 .有些最值问题 ,在运用平均不等式时等号不能成立 ,此时 ,可适当引入参数 ,利用待定系数法 ,解决平均不等式中等号不能成立的问题 .下面举例加以说明 .一、f(x) =axm + bxn(a ,b ,m ,n>0 )例 1  (2 0 0 0年上海市高考题 )已知函数f(x) =x2 + 2x+ax ,x∈ [1,+∞ ) ,若a=12 ,求函数 f(x)的最小值 .分析 当a=12 时 ,f(x) =x + 12x+ 2≥ 2 12 + 2 ,当且仅当x =12x,即x =22 时取等号 .但 22<1,不在函数定义…  相似文献   

4.
一、选择题 :1.已知函数f(x) =x2 - 2mx +4 +2m的定义域是R ,值域是 [1,+∞ ) ,则实数m的集合为 (   ) .A .{m|- 1≤m≤ 3}  B .{m|1- 5<m <5}C .{- 1,3}  D .{m|m <1或m >3}2 .要使函数 f(x) =ax2 +(a - 6 )x +2对一切正整数x都取正值 ,其充要条件是 (   ) .A .a =3  B .2 <a <18  C .a >2  D .以上都不对3.对每一对实数x ,y,函数 f(x)满足 f(x +y) - f(x) -f( y) =xy +1,且f( 1) =1,那么满足f(n) =n(n≠ 1)的整数n的个数共有 (   )个 .A .0  B .1  C .2  …  相似文献   

5.
例 1 已知函数 f(x) =1x2 + (a - 4 )x + 4 - 2a,若a∈ [- 1,1],则 f(x)的定义域为 (   ) .A .( 1,3)  B .( -∞ ,1)∪ ( 3,+∞ )  C .( 1,2 )  D .( -∞ ,1)∪ ( 2 ,+∞ )解 :原命题可等价转化为 :若a∈ [- 1,1],求x的取值范围 ,使x2 + (a - 4 )x +4 - 2a >0恒成立 .这样不妨令函数T(a) =(x - 2 )a +x2 - 4x + 4 .由题意可知 T( 1) >0 ,T( - 1) >0 ,即 x2 - 3x + 2 >0 ,x2 - 5x + 6 >0 .x∈ ( -∞ ,1)∪ ( 3,+∞ ) ,故选B .分析 :上面错解在一些师生中广为流传 ,因此有必要予以纠正 .求含参数的…  相似文献   

6.
在解决函数有关问题中 ,经常会碰到含有“某区间上一切变量都有某条件成立”的问题 .解决这类问题的关键在于巧妙合理地对变量赋予一系列特殊的值 ,然后通过代数推理 ,即可快速求解 .1 求值例 1 如果函数 f(x) =(x+a) 3 对任意x∈R都有 f(1+x) =- f(1-x) ,试求 f(2 ) + f(- 2 )的值 .解 由 f(1+x) =- f(1-x)对任意x∈R成立 ,可设x =0 ,得 f(1) =- f(1) ,∴f(1) =0 .又 f(1) =(1+a) 3 ,∴a =- 1.故 f(2 ) + f(- 2 ) =(2 - 1) 3 + (- 2 - 1) 3=- 2 6 .例 2 函数 f(x)是定义在R上的奇函数 ,且对任意的x∈R…  相似文献   

7.
问题 :对于函数 f(x) ,若存在x0 ∈R ,使f(x0 ) =x0 成立 ,则称x0 为 f(x)的不动点 .如果函数 f(x) =x2 +abx-c(b,c∈N)有且只有两个不动点 0 ,2 ,且f( -2 ) <-12 .( 1 )求函数 f(x)的解析式 ;( 2 )已知各项不为零的数列 {an}满足4Sn·f 1an =1 ,其中Sn 是数列 {an}的前n项和 ,求数列通项an.( 3 )如果数列 {an}满足a1 =4,an+1 =f(an) ,求证 :当n≥ 2时 ,恒有an <3成立 .一、分析与评述( 1 )分析 :由f( 0 ) =0 ,可得a=0 ,①又由 f( 2 ) =2可得 ,2b =c+2 ,②再由 f( -2 ) <-12 可得 ,2…  相似文献   

8.
一、定义法 由单调性的定义 ,只要确定“f(x1 ) - f(x2 )”的符号即可 .例 1 试确定y =2x +3x +1的单调区间 .解 :函数的定义域为 ( -∞ ,- 1)∪ ( - 1,+∞ ) .设x1 >x2 (x1 、x2 ≠ - 1) ,则Δ =f(x1 ) -f(x2 ) =2x1 +3x1 +1- 2x2 +3x2 +1=x2 -x1 ( 1+x1 ) ( 1+x2 ) .由x1 >x2 ,得x2 -x1 <0 .易知 ,当x1 、x2 ∈ ( -∞ ,- 1)时 ,1+x1 <0 ,1+x2 <0 ,Δ <0 ;当x1 、x2 ∈ ( - 1,+∞ )上时 ,Δ <0 .可知函数 y =2x +3x +1在 ( -∞ ,- 1)及 ( - 1,+∞ )上都是单调递减的 .注意 :对于Δ =f(x1 ) -f(x…  相似文献   

9.
大家知道 ,一元二次方程ax2 +bx +c=0 (a≠ 0 )根的判别式Δ =b2 - 4ac有着广泛的应用 .下面就用Δ≤ 0求某些函数最值谈谈它的应用 .例 1 若x、y、z为正实数 ,且x + 3y + 5z =15,求 x + 5y+ 2z的最大值 .解 :设函数f (m ) =(x + 3y + 5z)m2 + 2 (x + 5y + 2z)m +1+ 532 + 252 =( xm + 1) 2 + 3ym + 532 + 5zm + 252≥ 0 ,x + 3y + 5z=15>0 ,所以Δ =4 (x + 5y+ 2z) 2 - 4(x + 3y + 5z) 1+ 53+ 25≤ 0 .即x +5y+ 2z≤ 4 6 .易得等号可以成立 ,故所求式的最大值为 4 6 .例 2 设θ为锐角 ,求…  相似文献   

10.
纵观近年全国各省市高考数学模拟试题 ,“不动点”问题悄然兴起 .这类问题通常以“不动点”为载体 ,将函数、数列、不等式、方程、解析几何等知识有机地交汇在一起 ,因而极富思考性和挑战性 .下面笔者精选出 5道典型例题并予深刻剖析 ,旨在探索题型规律 ,揭示解题方法 .例 1 对于任意定义在区间D上的函数f(x) ,若实数x0 ∈D满足f(x0 ) =x0 ,则称x0 为函数 f(x)在D上的一个不动点 .(1)求函数f(x) =2x + 1x -2在 (0 ,+∞ ) 上的不动点 ;(2 )若函数f(x) =2x + 1x +a在 (0 ,+∞ )上没有不动点 ,求a的取值范围 .分析与解…  相似文献   

11.
不等式中恒成立问题是各类考试中的常见题型,其解法灵活.那么,如何求解呢?下面通过例题加以说明.一、分离参数,转化为求函数的最值例1 设f(x)是定义在(-∞,3]上的减函数,已知f(a2-sinx)≤f(a+1+cos2x)对于x∈R恒成立,求实数a的取值范围.分析:应在定义域和增减性的条件下去掉函数符号f,使a从f中解脱出来.解:原不等式等价于a+1+cos2x≤a2-sinx≤3对x∈R恒成立,即        a2≤3+sinx,a2-a≥1+cos2x+sinx①②对x∈R恒成立.令t(x)=3+sinx,则①对x∈R恒成令s(x)=1+cos2x…  相似文献   

12.
有一类抽象函数问题 ,常把与抽象函数有关的等式作为条件 ,在高考试题中频繁出现 ,怎样利用好这些等式是解决此类问题的关键1 利用递推关系把与抽象函数有关的等式看作递推式 ,利用其递推关系寻找新的等式 .例 1 已知 f(x)是定义在实数集上的函数 ,且满足 :f(x+ 4 ) f(x) =- 1,f(- 2 ) =2 + 1.求f(2 0 0 2 )的值 .解 由 f(x + 4 ) f(x) =- 1,得f(x + 4 ) =- 1f(x) .利用其递推关系可知f(x + 8) =- 1f(x + 4 ) =f(x) ,即函数 f(x)是周期为 8的函数 ,从而 f(2 0 0 2 ) =f(8× 2 5 0 + 2 ) =f(2 )=- 1f(- 2 ) =…  相似文献   

13.
由f(m+x)=±f(n±x)来判断抽象函数y=f(x)的周期性或对称性的情况,这类问题可说是随处可见.那么,孰断周期,孰断对称?下面总结四种类型:类型一:由“f(m+x)=f(n+x)”可判断周期性定理1 定义在R上的函数y=f(x),对于任给的x∈R,若有f(m+x)=f(n+x)成立(其中m、n为常数,且m≠n),则函数y=f(x)为周期函数,T=n-m为函数f(x)的一个周期(也可以说T=m-n).分析:此类情况属显性周期,即由周期函数定义可迅速获得上述结论.证明:由已知f(m+x)=f(n+x)对于x∈R均成立,故f[(n-m)+x]=f[n+(x-m)]=f[m…  相似文献   

14.
在解有关函数的问题时 ,学生往往容易忽视其定义域从而导致错误 ,令人惋惜 .笔者现举几例 ,以引起大家足够重视 .例 1 已知函数 f(x2 - 3) =lg x2x2 - 4 ,求 f(x)的定义域 .错解 令x2 - 3 =t ,则 f(t) =lgt 3t- 1.由t 3t - 1>0 ,得t<- 3或t >1.故函数 f(x)定义域为 {x|x<- 3或x>1} .评析 错解忽视了t受x2 - 3的约束 ,从而扩大了定义域的范围 .事实上 ,令x2 - 3=t,则t≥ - 3,f(t) =lgt 3t- 1.由t 3t- 1>0 ,t≥- 3,得t >1.故 f(x)定义域为 {x|x >1} .例 2 判断函数 f(x) =lg( 1-x2 )…  相似文献   

15.
函数思想是数学中的重要思想 ,用运动、变化的观点分析、处理变量和变量之间的关系是函数思想的精髓 .在解题中如能运用函数思想合理选择函数关系式 ,就能使解题思路自然流畅 .例 1 关于x的方程 9x+( 4 +a) 3 x+4 =0有实数解 ,求实数a的取值范围 .解 方程等价变形为4+a =-3 x+43 x .令f(x) =-3 x+43 x ,则f(x) ≤ -4 .∴ 4+a≤-4 ,a≤-8.a的取值范围为 ( -∞ ,-8] .例 2 关于x的方程 9x+( 4 +a) 3 x+4 =0有两个实数解 ,求实数a的取值范围 .解 令t =3 x,则问题等价于方程t2 +( 4 +a)t+4 =0在 ( 0 ,+∞ )上有…  相似文献   

16.
近几年来 ,在高考和各级各类的模拟试题之中 .也常常出现一些有关一元三次函数的内容 .以一元三次函数为载体设计的这类情境新颖的试题 ,可考查学生在新情景中吸收信息、处理信息的能力和综合运用数学知识分析、解决问题的能力 .一、以三次函数为蓝本 ,考查数形结合例 1 已知函数 f(x) =ax3+bx2 +cx+d的图象 (如图 1 ) ,问a、b、c、d中有为零的数吗 ?并确定非零数的符号 .分析 由图知x1 <0 ,x2 <0 ,x3>0 ,x1+x3<0 ,x2 +x3>0 ,f( 0 ) =d <0 .设 f(x) =a(x -x1 ) (x-x2 ) (x-x3) .由 f( 0 ) =-ax1 x2 x…  相似文献   

17.
涉及函数单调性的问题包括解不等式、求最值、比较大小、乃至解方程 ,这些都是近年高考的热点问题 .若利用单调性定义求解 ,一般较为复杂 ,做此类题目时学生往往半途而废 ,失分率较高 .高中教材引入导数以后 ,利用导数解决这类问题就变得比较简单 ,学生也易于接受 .函数的单调性与其导数的关系 :设函数 y =f(x)在某个区间内可导 ,则当 f′(x) >0时 f(x)为增函数 ;当 f′(x) <0时 f(x)为减函数 .例 1 求函数 f(x) =x2 + 2x,x∈ (0 ,+∞ )的单调区间 .解 f′(x) =2x-2x2 =2 (x3-1 )x2 ,令 f′(x) =0 ,得x=1 .∵x>…  相似文献   

18.
含参数不等式恒成立时 ,参数的取值范围问题是中学数学的难点之一 ,也是高考数学复习的一个热点 ,由于这类问题的条件均以“恒成立”的方式给出 ,多数学生对此只能作出表面理解 ,又由于在教材中找不到解决这类问题的理论依据 ,因此在解答这类问题时觉得困难。本文介绍几种常见方法 ,对这类问题进行实质性的分析、解答 ,供参考。1、利用一次函数的性质(1)一次函数 y =f(x) =kx +b ,在x∈ [m ,n]上f(x) >0恒成立的充要条件是 :k >0f(m) >0 或 k <0f(n) >0 或 f(m) >0f(n) >0(2 )一次函数 y =f(x) =kx +b在x∈ [m…  相似文献   

19.
在 2 0 0 2年上海高考题中有这样一道试题 :已知函数 f(x) =x2 +2x·tanθ-1 ,x∈ [-1 ,3 ],其中θ∈ -π2 ,π2 .( 1 )当θ=-π6时 ,求函数 f(x)的最大值与最小值 ;( 2 )求θ的取值范围 ,使 y =f(x)在[-1 ,3 ]上是单调函数 .该题以学生熟知的二次函数知识为载体 ,考查最值和单调函数的掌握情况 .解  ( 1 )当θ=-π6时 ,f(x) =x2 -2 33 x-1=x-332 -43 ,∴x=33 时 ,f(x)的最小值为 -43 .x=-1时 ,f(x)的最大值为2 33 .( 2 )函数 f(x) =(x+tanθ) 2 -1 -tan2 θ图象的对称轴为x =-tanθ,∵y =f(x)在…  相似文献   

20.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号