首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Multimodal sentiment analysis aims to judge the sentiment of multimodal data uploaded by the Internet users on various social media platforms. On one hand, existing studies focus on the fusion mechanism of multimodal data such as text, audio and visual, but ignore the similarity of text and audio, text and visual, and the heterogeneity of audio and visual, resulting in deviation of sentiment analysis. On the other hand, multimodal data brings noise irrelevant to sentiment analysis, which affects the effectness of fusion. In this paper, we propose a Polar-Vector and Strength-Vector mixer model called PS-Mixer, which is based on MLP-Mixer, to achieve better communication between different modal data for multimodal sentiment analysis. Specifically, we design a Polar-Vector (PV) and a Strength-Vector (SV) for judging the polar and strength of sentiment separately. PV is obtained from the communication of text and visual features to decide the sentiment that is positive, negative, or neutral sentiment. SV is gained from the communication between the text and audio features to analyze the sentiment strength in the range of 0 to 3. Furthermore, we devise an MLP-Communication module (MLP-C) composed of several fully connected layers and activation functions to make the different modal features fully interact in both the horizontal and the vertical directions, which is a novel attempt to use MLP for multimodal information communication. Finally, we mix PV and SV to obtain a fusion vector to judge the sentiment state. The proposed PS-Mixer is tested on two publicly available datasets, CMU-MOSEI and CMU-MOSI, which achieves the state-of-the-art (SOTA) performance on CMU-MOSEI compared with baseline methods. The codes are available at: https://github.com/metaphysicser/PS-Mixer.  相似文献   

2.
    
Quickly and accurately summarizing representative opinions is a key step for assessing microblog sentiments. The Ortony-Clore-Collins (OCC) model of emotion can offer a rule-based emotion export mechanism. In this paper, we propose an OCC model and a Convolutional Neural Network (CNN) based opinion summarization method for Chinese microblogging systems. We test the proposed method using real world microblog data. We then compare the accuracy of manual sentiment annotation to the accuracy using our OCC-based sentiment classification rule library. Experimental results from analyzing three real-world microblog datasets demonstrate the efficacy of our proposed method. Our study highlights the potential of combining emotion cognition with deep learning in sentiment analysis of social media data.  相似文献   

3.
Data availability and access to various platforms, is changing the nature of Information Systems (IS) studies. Such studies often use large datasets, which may incorporate structured and unstructured data, from various platforms. The questions that such papers address, in turn, may attempt to use methods from computational science like sentiment mining, text mining, network science and image analytics to derive insights. However, there is often a weak theoretical contribution in many of these studies. We point out the need for such studies to contribute back to the IS discipline, whereby findings can explain more about the phenomenon surrounding the interaction of people with technology artefacts and the ecosystem within which these contextual usage is situated. Our opinion paper attempts to address this gap and provide insights on the methodological adaptations required in “big data studies” to be converted into “IS research” and contribute to theory building in information systems.  相似文献   

4.
    
In this work, we propose BERT-WMAL, a hybrid model that brings together information coming from data through the recent transformer deep learning model and those obtained from a polarized lexicon. The result is a model for sentence polarity that manages to have performances comparable with those at the state-of-the-art, but with the advantage of being able to provide the end-user with an explanation regarding the most important terms involved with the provided prediction. The model has been evaluated on three polarity detection Italian dataset, i.e., SENTIPOLC, AGRITREND and ABSITA. While the first contains 7,410 tweets released for training and 2,000 for testing, the second and the third respectively include 1,000 tweets without splitting , and 2,365 reviews for training, 1,171 for testing. The use of lexicon-based information proves to be effective in terms of the F1 measure since it shows an improvement of F1 score on all the observed dataset: from 0.664 to 0.669 (i.e, 0.772%) on AGRITREND, from 0.728 to 0.734 (i.e., 0.854%) on SENTIPOLC and from 0.904 to 0.921 (i.e, 1.873%) on ABSITA. The usefulness of this model not only depends on its effectiveness in terms of the F1 measure, but also on its ability to generate predictions that are more explainable and especially convincing for the end-users. We evaluated this aspect through a user study involving four native Italian speakers, each evaluating 64 sentences with associated explanations. The results demonstrate the validity of this approach based on a combination of weights of attention extracted from the deep learning model and the linguistic knowledge stored in the WMAL lexicon. These considerations allow us to regard the approach provided in this paper as a promising starting point for further works in this research area.  相似文献   

5.
    
Analyzing and extracting insights from user-generated data has become a topic of interest among businesses and research groups because such data contains valuable information, e.g., consumers’ opinions, ratings, and recommendations of products and services. However, the true value of social media data is rarely discovered due to overloaded information. Existing literature in analyzing online hotel reviews mainly focuses on a single data resource, lexicon, and analysis method and rarely provides marketing insights and decision-making information to improve business’ service and quality of products. We propose an integrated framework which includes a data crawler, data preprocessing, sentiment-sensitive tree construction, convolution tree kernel classification, aspect extraction and category detection, and visual analytics to gain insights into hotel ratings and reviews. The empirical findings show that our proposed approach outperforms baseline algorithms as well as well-known sentiment classification methods, and achieves high precision (0.95) and recall (0.96). The visual analytics results reveal that Business travelers tend to give lower ratings, while Couples tend to give higher ratings. In general, users tend to rate lowest in July and highest in December. The Business travelers more frequently use negative keywords, such as “rude,” “terrible,” “horrible,” “broken,” and “dirty,” to express their dissatisfied emotions toward their hotel stays in July.  相似文献   

6.
    
Stock exchange forecasting is an important aspect of business investment plans. The customers prefer to invest in stocks rather than traditional investments due to high profitability. The high profit is often linked with high risk due to the nonlinear nature of data and complex economic rules. The stock markets are often volatile and change abruptly due to the economic conditions, political situation and major events for the country. Therefore, to investigate the effect of some major events more specifically global and local events for different top stock companies (country-wise) remains an open research area. In this study, we consider four countries- US, Hong Kong, Turkey, and Pakistan from developed, emerging and underdeveloped economies’ list. We have explored the effect of different major events occurred during 2012–2016 on stock markets. We use the Twitter dataset to calculate the sentiment analysis for each of these events. The dataset consists of 11.42 million tweets that were used to determine the event sentiment. We have used linear regression, support vector regression and deep learning for stock exchange forecasting. The performance of the system is evaluated using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results show that performance improves by using the sentiment for these events.  相似文献   

7.
8.
    
Abstractive summarization aims to generate a concise summary covering salient content from single or multiple text documents. Many recent abstractive summarization methods are built on the transformer model to capture long-range dependencies in the input text and achieve parallelization. In the transformer encoder, calculating attention weights is a crucial step for encoding input documents. Input documents usually contain some key phrases conveying salient information, and it is important to encode these phrases completely. However, existing transformer-based summarization works did not consider key phrases in input when determining attention weights. Consequently, some of the tokens within key phrases only receive small attention weights, which is not conducive to encoding the semantic information of input documents. In this paper, we introduce some prior knowledge of key phrases into the transformer-based summarization model and guide the model to encode key phrases. For the contextual representation of each token in the key phrase, we assume the tokens within the same key phrase make larger contributions compared with other tokens in the input sequence. Based on this assumption, we propose the Key Phrase Aware Transformer (KPAT), a model with the highlighting mechanism in the encoder to assign greater attention weights for tokens within key phrases. Specifically, we first extract key phrases from the input document and score the phrases’ importance. Then we build the block diagonal highlighting matrix to indicate these phrases’ importance scores and positions. To combine self-attention weights with key phrases’ importance scores, we design two structures of highlighting attention for each head and the multi-head highlighting attention. Experimental results on two datasets (Multi-News and PubMed) from different summarization tasks and domains show that our KPAT model significantly outperforms advanced summarization baselines. We conduct more experiments to analyze the impact of each part of our model on the summarization performance and verify the effectiveness of our proposed highlighting mechanism.  相似文献   

9.
    
We introduce Big Data Analytics (BDA) and Sentiment Analysis (SA) to the study of international negotiations, through an application to the case of the UK-EU Brexit negotiations and the use of Twitter user sentiment. We show that SA of tweets has potential as a real-time barometer of public sentiment towards negotiating outcomes to inform government decision-making. Despite the increasing need for information on collective preferences regarding possible negotiating outcomes, negotiators have been slow to capitalise on BDA. Through SA on a corpus of 13,018,367 tweets on defined Brexit hashtags, we illustrate how SA can provide a platform for decision-makers engaged in international negotiations to grasp collective preferences. We show that BDA and SA can enhance decision-making and strategy in public policy and negotiation contexts of the magnitude of Brexit. Our findings indicate that the preferred or least preferred Brexit outcomes could have been inferred by the emotions expressed by Twitter users. We argue that BDA can be a mechanism to map the different options available to decision-makers and bring insights to and inform their decision-making. Our work, thereby, proposes SA as part of the international negotiation toolbox to remedy for the existing informational gap between decision makers and citizens’ preferred outcomes.  相似文献   

10.
The breeding and spreading of negative emotion in public emergencies posed severe challenges to social governance. The traditional government information release strategies ignored the negative emotion evolution mechanism. Focusing on the information release policies from the perspectives of the government during public emergency events, by using cognitive big data analytics, our research applies deep learning method into news framing framework construction process, and tries to explore the influencing mechanism of government information release strategy on contagion-evolution of negative emotion. In particular, this paper first uses Word2Vec, cosine word vector similarity calculation and SO-PMI algorithms to build a public emergencies-oriented emotional lexicon; then, it proposes a emotion computing method based on dependency parsing, designs an emotion binary tree and dependency-based emotion calculation rules; and at last, through an experiment, it shows that the emotional lexicon proposed in this paper has a wider coverage and higher accuracy than the existing ones, and it also performs a emotion evolution analysis on an actual public event based on the emotional lexicon, using the emotion computing method proposed. And the empirical results show that the algorithm is feasible and effective. The experimental results showed that this model could effectively conduct fine-grained emotion computing, improve the accuracy and computational efficiency of sentiment classification. The final empirical analysis found that due to such defects as slow speed, non transparent content, poor penitence and weak department coordination, the existing government information release strategies had a significant negative impact on the contagion-evolution of anxiety and disgust emotion, could not regulate negative emotions effectively. These research results will provide theoretical implications and technical supports for the social governance. And it could also help to establish negative emotion management mode, and construct a new pattern of the public opinion guidance.  相似文献   

11.
12.
    
As a hot spot these years, cross-domain sentiment classification aims to learn a reliable classifier using labeled data from a source domain and evaluate the classifier on a target domain. In this vein, most approaches utilized domain adaptation that maps data from different domains into a common feature space. To further improve the model performance, several methods targeted to mine domain-specific information were proposed. However, most of them only utilized a limited part of domain-specific information. In this study, we first develop a method of extracting domain-specific words based on the topic information derived from topic models. Then, we propose a Topic Driven Adaptive Network (TDAN) for cross-domain sentiment classification. The network consists of two sub-networks: a semantics attention network and a domain-specific word attention network, the structures of which are based on transformers. These sub-networks take different forms of input and their outputs are fused as the feature vector. Experiments validate the effectiveness of our TDAN on sentiment classification across domains. Case studies also indicate that topic models have the potential to add value to cross-domain sentiment classification by discovering interpretable and low-dimensional subspaces.  相似文献   

13.
Sentiment analysis concerns the study of opinions expressed in a text. This paper presents the QMOS method, which employs a combination of sentiment analysis and summarization approaches. It is a lexicon-based method to query-based multi-documents summarization of opinion expressed in reviews.QMOS combines multiple sentiment dictionaries to improve word coverage limit of the individual lexicon. A major problem for a dictionary-based approach is the semantic gap between the prior polarity of a word presented by a lexicon and the word polarity in a specific context. This is due to the fact that, the polarity of a word depends on the context in which it is being used. Furthermore, the type of a sentence can also affect the performance of a sentiment analysis approach. Therefore, to tackle the aforementioned challenges, QMOS integrates multiple strategies to adjust word prior sentiment orientation while also considers the type of sentence. QMOS also employs the Semantic Sentiment Approach to determine the sentiment score of a word if it is not included in a sentiment lexicon.On the other hand, the most of the existing methods fail to distinguish the meaning of a review sentence and user's query when both of them share the similar bag-of-words; hence there is often a conflict between the extracted opinionated sentences and users’ needs. However, the summarization phase of QMOS is able to avoid extracting a review sentence whose similarity with the user's query is high but whose meaning is different. The method also employs the greedy algorithm and query expansion approach to reduce redundancy and bridge the lexical gaps for similar contexts that are expressed using different wording, respectively. Our experiment shows that the QMOS method can significantly improve the performance and make QMOS comparable to other existing methods.  相似文献   

14.
The polarity shift problem is a major factor that affects classification performance of machine-learning-based sentiment analysis systems. In this paper, we propose a three-stage cascade model to address the polarity shift problem in the context of document-level sentiment classification. We first split each document into a set of subsentences and build a hybrid model that employs rules and statistical methods to detect explicit and implicit polarity shifts, respectively. Secondly, we propose a polarity shift elimination method, to remove polarity shift in negations. Finally, we train base classifiers on training subsets divided by different types of polarity shifts, and use a weighted combination of the component classifiers for sentiment classification. The results on a range of experiments illustrate that our approach significantly outperforms several alternative methods for polarity shift detection and elimination.  相似文献   

15.
    
According to Freud “words were originally magic and to this day words have retained much of their ancient magical power”. By words, behaviors are transformed and problems are solved. The way we use words reveals our intentions, goals and values. Novel tools for text analysis help understand the magical power of words. This power is multiplied, if it is combined with the study of social networks, i.e. with the analysis of relationships among social units. This special issue of the International Journal of Information Management, entitled “Combining Social Network Analysis and Text Mining: from Theory to Practice”, includes heterogeneous and innovative research at the nexus of text mining and social network analysis. It aims to enrich work at the intersection of these fields, which still lags behind in theoretical, empirical, and methodological foundations. The nine articles accepted for inclusion in this special issue all present methods and tools that have business applications. They are summarized in this editorial introduction.  相似文献   

16.
为促进检验检测业服务质量提升,以检验检测(IT)服务质量评级和用户服务需求为切入点,采用基于长短期记忆网络(LSTM)的深度学习方法,设计由有形性、可靠性、响应性、安全性和移情性5个维度构成的评价体系,通过检验检测-服务质量-长短期记忆网络-情感分析模型(IT-QoS-LSTM-SA)对检验检测服务机构服务质量(QoS)进行评价与反馈,并利用7万多条相关文本数据进行实证。结果显示:LSTM模型在检验检测用户评论分类中的准确率达到了85.24%;根据情感分析(SA)计算得出检验检测服务质量的总评分为0.491 6,处于满意和非常满意程度之间。由此可以直观地看出检验检测服务质量在各项评价指标上的优劣程度。  相似文献   

17.
    
Artificial Intelligence tools have attracted attention from the literature and business organizations in the last decade, especially by the advances in machine learning techniques. However, despite the great potential of AI technologies for solving problems, there are still issues involved in practical use and lack of knowledge as regards using AI in a strategic way, in order to create business value. In this context, the present study aims to fill this gap by: providing a critical literature review related to the integration of AI to organizational strategy; synthetizing the existing approaches and frameworks, highlighting the potential benefits, challenges and opportunities; presenting a discussion about future research directions. Through a systematic literature review, research articles were analyzed. Besides gaps for future studies, a conceptual framework is presented, discussed according to four sources of value creation: (i) decision support; (ii) customer and employee engagement; (iii) automation; and (iv) new products and services. These findings contribute to both theoretical and managerial perspectives, with extensive opportunities for generating novel theory and new forms of management practices.  相似文献   

18.
    
Although deep learning breakthroughs in NLP are based on learning distributed word representations by neural language models, these methods suffer from a classic drawback of unsupervised learning techniques. Furthermore, the performance of general-word embedding has been shown to be heavily task-dependent. To tackle this issue, recent researches have been proposed to learn the sentiment-enhanced word vectors for sentiment analysis. However, the common limitation of these approaches is that they require external sentiment lexicon sources and the construction and maintenance of these resources involve a set of complexing, time-consuming, and error-prone tasks. In this regard, this paper proposes a method of sentiment lexicon embedding that better represents sentiment word's semantic relationships than existing word embedding techniques without manually-annotated sentiment corpus. The major distinguishing factor of the proposed framework was that joint encoding morphemes and their POS tags, and training only important lexical morphemes in the embedding space. To verify the effectiveness of the proposed method, we conducted experiments comparing with two baseline models. As a result, the revised embedding approach mitigated the problem of conventional context-based word embedding method and, in turn, improved the performance of sentiment classification.  相似文献   

19.
    
This article describes in-depth research on machine learning methods for sentiment analysis of Czech social media. Whereas in English, Chinese, or Spanish this field has a long history and evaluation datasets for various domains are widely available, in the case of the Czech language no systematic research has yet been conducted. We tackle this issue and establish a common ground for further research by providing a large human-annotated Czech social media corpus. Furthermore, we evaluate state-of-the-art supervised machine learning methods for sentiment analysis. We explore different pre-processing techniques and employ various features and classifiers. We also experiment with five different feature selection algorithms and investigate the influence of named entity recognition and preprocessing on sentiment classification performance. Moreover, in addition to our newly created social media dataset, we also report results for other popular domains, such as movie and product reviews. We believe that this article will not only extend the current sentiment analysis research to another family of languages, but will also encourage competition, potentially leading to the production of high-end commercial solutions.  相似文献   

20.
Researchers have been aware that emotion is not one-hot encoded in emotion-relevant classification tasks, and multiple emotions can coexist in a given sentence. Recently, several works have focused on leveraging a distribution label or a grayscale label of emotions in the classification model, which can enhance the one-hot label with additional information, such as the intensity of other emotions and the correlation between emotions. Such an approach has been proven effective in alleviating the overfitting problem and improving the model robustness by introducing a distribution learning component in the objective function. However, the effect of distribution learning cannot be fully unfolded as it can reduce the model’s discriminative ability within similar emotion categories. For example, “Sad” and “Fear” are both negative emotions. To address such a problem, we proposed a novel emotion extension scheme in the prior work (Li, Chen, Xie, Li, and Tao, 2021). The prior work incorporated fine-grained emotion concepts to build an extended label space, where a mapping function between coarse-grained emotion categories and fine-grained emotion concepts was identified. For example, sentences labeled “Joy” can convey various emotions such as enjoy, free, and leisure. The model can further benefit from the extended space by extracting dependency within fine-grained emotions when yielding predictions in the original label space. The prior work has shown that it is more apt to apply distribution learning in the extended label space than in the original space. A novel sparse connection method, i.e., Leaky Dropout, is proposed in this paper to refine the dependency-extraction step, which further improves the classification performance. In addition to the multiclass emotion classification task, we extensively experimented on sentiment analysis and multilabel emotion prediction tasks to investigate the effectiveness and generality of the label extension schema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号