首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用相似三角形的性质证明线段成比例和角相等 ,是几何证题中的重点和难点 ,其关键在于能否在复杂的几何图形中迅速而正确地找到 (或构造出 )所需要的三角形 .下面就此谈几点认识 ,供同学们参考 :一、熟悉相似三角形四种基本类型相似三角形的常见的四种基本图形分类总结如下 :( 1)平行线型 :如图 1,D E∥ BC,则△ AD E∽△ ABC图 1( 2 )相交线型 :如图 2 ,已知∠ 1=∠ B,则可由公共角或对顶角 ,得△ A DE∽△ ABC图 2图 3图 4( 3)旋转型 :如图 3,已知∠ BAD =∠ CAE,则△ A DE绕点 A旋转一定角度后与△ ABC构成平行线型相似三角…  相似文献   

2.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

3.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

4.
《几何》课本“相似形”一章中有一定理:“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。”如图1、图2,为叙述方便起见,我们称这一类相似三角形为平行线型相似三角形。称基本图形图1为“A”字型,基本图形图2为“X”字型,不管哪种情况,都有 DE∥BC(?)ΔADE∽△ABC(?)AD/AB=DE/BC=AE/AC  相似文献   

5.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

6.
<正>引例(教材第12页习题1.4第1题)已知:如图1,△ABC是等边三角形,DE∥BC,分别交AB和AC于点D,E.求证:△ADE是等边三角形.(证明略)对此题进行变式,可以得到一系列数学问题.变式1:将△ADE放到△ABC的外部,探究相等线段.例1如图2,△ABC,△ADE是等边三角形.求证:BD=CE.  相似文献   

7.
证明含三角函数的几何等式,不少同学感到难以下手,如应用锐角三角函数的定义,将式子中的三角函数转换为两线段的比,从而将问题转化为线段的等比(积),常可迎刃而解。 例1 如图1,△ABC中,以BC为直径的半圆分别和AB、AC交于D、E.求证:DE=BCcosA (1994,西安市中考题) 分析:连BE,则∠BEC=90°,△ABE为直角三角形,从而命题转化为证明DE=BC·AE/AB,即证DE/BC=AE/AB. 为此,可证△ADE∽△ACB. 由∠ADE=∠ACB,∠A=∠A.命题获证.  相似文献   

8.
如图,P为△ABC内任意一点,过P分别作DE∥BC,FG∥CA,HK∥AB,得△GDP,△PEK,△PHF,易知:△GDP∽△KPE∽△PHF∽△ABC,不仅如此,这四个三角形还有更密切的联系。定理设图中的△GDP、△KPE,△PHF与△ABC的相似比分别为k_1、k_2、k_3,则有k_1 k_2 k_3=1。证明∵k_1=GD/AB, k_2=KP/AB=AG/AB,k_3=PH/AB=BD/AB。∴ k_1 k_2 k_3=(GD AG DB)/AB=1。由上述定理,还可得到:  相似文献   

9.
三角形全等是几何的基础知识,判定三角形全等应注意以下几点.1.要注意“边角边”公理中的角是指两条对应边的夹角.例1如图1,BC=CD,∠B=∠ACD,试问△ABC和△ACD是否全等.有些同学说是全等并这样证明:在△ABC和△ACD中,∵AC=AC(公共边),∠B=∠ACD(已知),BC=CD(已知),∴△ABC≌△ACD.上述证明是错误的,因为∠B不是AC和BC的夹角,故这两个三角形不一定全等.评注:例1说明,在判定三角形全等时,要注意判定条件的顺序性.如在例1的△ACD和△ABC中,其条件分别是“SAS”与“SSA”,即条件是分别相等,并非对应相等.2.要注意分清“角…  相似文献   

10.
相似三角形的知识在测量和绘图方面都有广泛的应用,同时又是学习相似多边形和其他相似形以及三角知识的基础.它是“相似形”这一章书的重点.其中,三角形相似的判定定理的证明又是本章的难点.下面着重谈谈三个判定定理的证明.在教学判定定理前,先复习三角形相似的预备定理.即,如图一,只要B_1C_1//BC,那么△AB_1C_1就和△ABC相似.这预备定理是证明三角形相似的三个判定定理的基础.三角形相似判定定理一:如果一个三角形的两个角和另一个三角形的两个角对应相等,那么这两个三角形相似.已知:在△A_1B_1C_1和△ABC中,∠A_1=∠A,∠B_1=∠B.(图二)。求证:△A_1B_1C_1∽  相似文献   

11.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

12.
<正>1试题呈现(深圳中考第15题)如图1,在△ABC中,AB=AC,tan∠B=3/4,点D为BC上一动点,联结AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE△AGE/S△ADG=_____2解法探究由题意知△ABD沿AD翻折得到△ADE,所以∠ABC=∠AED,因为AB=AC,所以∠ABC=∠ACB,所以∠ACB=∠AED。又因为∠AGE=∠DGC,所以△AGE∽△DGC。在下列解法中△AGE∽△DGC的结论不重复证明。  相似文献   

13.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

14.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

15.
面积比的类型很多,本文着重谈“有一个角对应相等(或互补)的两个三角形面积之比等于夹这个角的两边乘积之比”在几何证题中的广泛应用。这个性质可表示为: 定理:在△ABC与△A_1B_1C_1中,∠B=∠B_1(或互补),则 S_(△ABC)/S(△A_1B_1C_1)=(AB·BC)/(A_1B_1·B_1C_1)。我们用三角形的面积公式S=1/2acsinB容易证明上述定理(略)。不少比例线段的证明,可归结为这个性质的应用。下面举例说明之。 1.证明三角形内角平分线的性质例1 已知△ABC的内角A的平分线交BC于D 求证:  相似文献   

16.
三角形全等的证明是几何证题中的重要内容.证三角形全等,可用来证明两线段相等,两角相等,两直线垂直等等.如何准确、迅速地探求出从已知条件到达求证结论的证明途径呢?下面通过实例来谈谈探求证明途径的基本思路.例1已知:如图1,A、B、C三点在一条直线上,△ACD和△BCE都是等边三角形.求证:AE=DB.分析从△ACD是等边三角形,可得AC=DC,∠BCD=60°,同理,EC=BC,∠ECA=60°.欲证AE=DB,只需图1证△BCD≌△ECA.证明∵△ACD是等边三角形,∴AC=DC,∠BCD=60°.同理,EC=BC,∠ECA=60°.在△ECA和△BCD中,∵AC=DC,∠ECA=∠BC…  相似文献   

17.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

18.
类型一 :平行线型这种基本图形有两种形式 :( 1) A形基本图形。如图一所示 ,它是由平行线截三角形的两边构成的 ,由 DE∥ BC,推出△ ADE∽△ ABC。   ( 2 ) X型基本图形。如图二所示 ,将图一中DE平行移动 ,与 BA、CA的延长线相交就可得到这类基本图形 ,由ED∥ BC,推出△ ADE∽△ ABC。例 1 如图三所示 ,直线 FD和△ ABC的边BC交于 D,交 AC于 E,与 BA的延长线交于 F,且 BD=DC。求证 :AEEC=FAFB。分析 :由于 AEEC与 FAFB涉及的四条线段构不成基本图形 ,因而必须寻找中间比将它们联系起来。图中没有 A型和 X型基…  相似文献   

19.
“探索三角形相似的条件”是《图形的相似》一章的重点,也是后续学习的基础.那么,如何才能学好这部分知识呢?本文给出了几点建议.一、正确理解三角形相似的条件相似三角形与全等三角形,其识别方法一脉相承、相互对应,所不同的是全等需对应边相等,而相似则要对应边成比例.例1判断△ABC与△DEF满足下列条件时是否相似?(1)∠A=∠D=50°,∠B=70°,∠E=60°;(2)∠A=∠E=40°,AB=2,BC=3,DE=4,DF=6;(3)AB=2,BC=4,AC=5,DE=2,EF=2·5,DF=1.析解(1)因为∠A=∠D=50°,∠B=∠F=70°,所以△ABC∽△DFE;(2)因为DAEB=DBFC=21,虽有∠A=…  相似文献   

20.
<正>一、平移全等模型例1如图1,点A,B,D,E在同一条直线上,AB=DE,AC//DF,BC//EF.求证:△ABC≌△DEF.解析:根据已知条件,利用“ASA”即可证出△ABC≌△DEF.∵AC//DF,∴∠CAB=∠FDE.∵BC//EF,∴∠CBA=∠FED.∵∠CAB=∠FDE,AB=DE,∠CBA=∠FED,∴△ABC≌△DEF(ASA).反思:可将图1看作是△ABC沿AB方向平移AD的长度得到的全等三角形模型.常见的平移全等三角形模型的呈现形式有图1、图2两种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号