首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
For the fourth consecutive year, the American Educational Research Association’s Online Teaching and Learning Special Interest Group has been given the opportunity to publish an issue of the INTHIG dedicated to the work of its members. Unlike prior years, this issue is expanded to include work from members of other groups within the AERA dedicated to working in online learning environments. The articles included in this issue represent cutting-edge research from some of the most renowned authors in the field.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
This editorial introduction positions distance education in the larger context of educational research and theory construction. Next to a definition of key concepts, the authors elaborate three major issues that are dealt with in distance education research in relation to educational materials. The first issue centres on curriculum and values. The second topic concentrates on the creation of appropriate learning environments. The third issue focuses on the evaluation of effects of materials in use. In discussing the three issues the authors stress the particularities of the distance education context.  相似文献   

15.
16.
17.
18.
19.
Multiple external representations (MERs) are central to the practice and learning of science, mathematics and engineering, as the phenomena and entities investigated and controlled in these domains are often not available for perception and action. MERs therefore play a twofold constitutive role in reasoning in these domains. Firstly, MERs stand in for the phenomena and entities that are imagined, and thus make possible scientific investigations. Secondly, related to the above, sensorimotor and imagination-based interactions with the MERs make possible focused cognitive operations involving these phenomena and entities, such as mental rotation and analogical transformations. These two constitutive roles suggest that acquiring expertise in science, mathematics and engineering requires developing the ability to transform and integrate the MERs in that field, in tandem with running operations in imagination on the phenomena and entities the MERs stand for. This core ability to integrate external and internal representations and operations on them – termed representational competence (RC) – is therefore critical to learning in science, mathematics and engineering. However, no general account of this core process is currently available. We argue that, given the above two constitutive roles played by MERs, a theoretical account of representational competence requires an explicit model of how the cognitive system interacts with external representations, and how imagination abilities develop through this process. At the applied level, this account is required to develop design guidelines for new media interventions for learning science and mathematics, particularly emerging ones that are based on embodied interactions. As a first step to developing such a theoretical account, we review the literature on learning with MERs, as well as acquiring RC, in chemistry, biology, physics, mathematics and engineering, from two perspectives. First, we focus on the important theoretical accounts and related empirical studies, and examine what is common about them. Second, we summarise the major trends in each discipline, and then bring together these trends. The results show that most models and empirical studies of RC are framed within the classical information processing approach, and do not take a constitutive view of external representations. To develop an account compatible with the constitutive view of external representations, we outline an interaction-based theoretical account of RC, extending recent advances in distributed and embodied cognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号