首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robust maximum likelihood (ML) and categorical diagonally weighted least squares (cat-DWLS) estimation have both been proposed for use with categorized and nonnormally distributed data. This study compares results from the 2 methods in terms of parameter estimate and standard error bias, power, and Type I error control, with unadjusted ML and WLS estimation methods included for purposes of comparison. Conditions manipulated include model misspecification, level of asymmetry, level and categorization, sample size, and type and size of the model. Results indicate that cat-DWLS estimation method results in the least parameter estimate and standard error bias under the majority of conditions studied. Cat-DWLS parameter estimates and standard errors were generally the least affected by model misspecification of the estimation methods studied. Robust ML also performed well, yielding relatively unbiased parameter estimates and standard errors. However, both cat-DWLS and robust ML resulted in low power under conditions of high data asymmetry, small sample sizes, and mild model misspecification. For more optimal conditions, power for these estimators was adequate.  相似文献   

2.
This study compared diagonal weighted least squares robust estimation techniques available in 2 popular statistical programs: diagonal weighted least squares (DWLS; LISREL version 8.80) and weighted least squares–mean (WLSM) and weighted least squares—mean and variance adjusted (WLSMV; Mplus version 6.11). A 20-item confirmatory factor analysis was estimated using item-level ordered categorical data. Three different nonnormality conditions were applied to 2- to 7-category data with sample sizes of 200, 400, and 800. Convergence problems were seen with nonnormal data when DWLS was used with few categories. Both DWLS and WLSMV produced accurate parameter estimates; however, bias in standard errors of parameter estimates was extreme for select conditions when nonnormal data were present. The robust estimators generally reported acceptable model–data fit, unless few categories were used with nonnormal data at smaller sample sizes; WLSMV yielded better fit than WLSM for most indices.  相似文献   

3.
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate, parameter estimate bias, MSE of parameter estimates, standard error coverage, model rejection rate, and model goodness of fit—RMSEA. A three-factor CFA model was used. Findings indicated that FIML outperformed the other methods in MCAR, and MI should be used to increase the plausibility of MAR. SRPI was not comparable to the other three methods in either MCAR or MAR.  相似文献   

4.
When both model misspecifications and nonnormal data are present, it is unknown how trustworthy various point estimates, standard errors (SEs), and confidence intervals (CIs) are for standardized structural equation modeling parameters. We conducted simulations to evaluate maximum likelihood (ML), conventional robust SE estimator (MLM), Huber–White robust SE estimator (MLR), and the bootstrap (BS). We found (a) ML point estimates can sometimes be quite biased at finite sample sizes if misfit and nonnormality are serious; (b) ML and MLM generally give egregiously biased SEs and CIs regardless of the degree of misfit and nonnormality; (c) MLR and BS provide trustworthy SEs and CIs given medium misfit and nonnormality, but BS is better; and (d) given severe misfit and nonnormality, MLR tends to break down and BS begins to struggle.  相似文献   

5.
Data collected from questionnaires are often in ordinal scale. Unweighted least squares (ULS), diagonally weighted least squares (DWLS) and normal-theory maximum likelihood (ML) are commonly used methods to fit structural equation models. Consistency of these estimators demands no structural misspecification. In this article, we conduct a simulation study to compare the equation-by-equation polychoric instrumental variable (PIV) estimation with ULS, DWLS, and ML. Accuracy of PIV for the correctly specified model and robustness of PIV for misspecified models are investigated through a confirmatory factor analysis (CFA) model and a structural equation model with ordinal indicators. The effects of sample size and nonnormality of the underlying continuous variables are also examined. The simulation results show that PIV produces robust factor loading estimates in the CFA model and in structural equation models. PIV also produces robust path coefficient estimates in the model where valid instruments are used. However, robustness highly depends on the validity of instruments.  相似文献   

6.
A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. In the simulation design, (a) sample size, (b) the level of nonnormality characterizing the data, (c) the population values of the model parameters, and (d) the type of estimator were systematically varied. Estimates of model parameters were generally unaffected by either nonnormality or small sample size. Under severely nonnormal conditions, normal theory maximum likelihood estimates of the standard error of the mediated effect exhibited less bias (approximately 10% to 20% too small) compared to the standard errors of the structural regression coefficients (20% to 45% too small). Asymptotically distribution free standard errors of both the mediated effect and the structural parameters were substantially affected by sample size, but not nonnormality. Robust standard errors consistently yielded the most accurate estimates of sampling variability.  相似文献   

7.
Though the common default maximum likelihood estimator used in structural equation modeling is predicated on the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to utilize distribution-free estimation methods. Fortunately, promising alternatives are being integrated into popular software packages. Bootstrap resampling, which is offered in AMOS (Arbuckle, 1997), is one potential solution for estimating model test statistic p values and parameter standard errors under nonnormal data conditions. This study is an evaluation of the bootstrap method under varied conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Accuracy of the test statistic p values is evaluated in terms of model rejection rates, whereas accuracy of bootstrap standard error estimates takes the form of bias and variability of the standard error estimates themselves.  相似文献   

8.
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact traditional marginal maximum likelihood (ML) estimation of IRT model parameters, including sample size, with smaller samples generally being associated with lower parameter estimation accuracy, and inflated standard errors for the estimates. Given this deleterious impact of small samples on IRT model performance, use of these techniques with low-incidence populations, where it might prove to be particularly useful, estimation becomes difficult, especially with more complex models. Recently, a Pairwise estimation method for Rasch model parameters has been suggested for use with missing data, and may also hold promise for parameter estimation with small samples. This simulation study compared item difficulty parameter estimation accuracy of ML with the Pairwise approach to ascertain the benefits of this latter method. The results support the use of the Pairwise method with small samples, particularly for obtaining item location estimates.  相似文献   

9.
This simulation study demonstrates how the choice of estimation method affects indexes of fit and parameter bias for different sample sizes when nested models vary in terms of specification error and the data demonstrate different levels of kurtosis. Using a fully crossed design, data were generated for 11 conditions of peakedness, 3 conditions of misspecification, and 5 different sample sizes. Three estimation methods (maximum likelihood [ML], generalized least squares [GLS], and weighted least squares [WLS]) were compared in terms of overall fit and the discrepancy between estimated parameter values and the true parameter values used to generate the data. Consistent with earlier findings, the results show that ML compared to GLS under conditions of misspecification provides more realistic indexes of overall fit and less biased parameter values for paths that overlap with the true model. However, despite recommendations found in the literature that WLS should be used when data are not normally distributed, we find that WLS under no conditions was preferable to the 2 other estimation procedures in terms of parameter bias and fit. In fact, only for large sample sizes (N = 1,000 and 2,000) and mildly misspecified models did WLS provide estimates and fit indexes close to the ones obtained for ML and GLS. For wrongly specified models WLS tended to give unreliable estimates and over-optimistic values of fit.  相似文献   

10.
Classical accounts of maximum likelihood (ML) estimation of structural equation models for continuous outcomes involve normality assumptions: standard errors (SEs) are obtained using the expected information matrix and the goodness of fit of the model is tested using the likelihood ratio (LR) statistic. Satorra and Bentler (1994) introduced SEs and mean adjustments or mean and variance adjustments to the LR statistic (involving also the expected information matrix) that are robust to nonnormality. However, in recent years, SEs obtained using the observed information matrix and alternative test statistics have become available. We investigate what choice of SE and test statistic yields better results using an extensive simulation study. We found that robust SEs computed using the expected information matrix coupled with a mean- and variance-adjusted LR test statistic (i.e., MLMV) is the optimal choice, even with normally distributed data, as it yielded the best combination of accurate SEs and Type I errors.  相似文献   

11.
Competence data from low‐stakes educational large‐scale assessment studies allow for evaluating relationships between competencies and other variables. The impact of item‐level nonresponse has not been investigated with regard to statistics that determine the size of these relationships (e.g., correlations, regression coefficients). Classical approaches such as ignoring missing values or treating them as incorrect are currently applied in many large‐scale studies, while recent model‐based approaches that can account for nonignorable nonresponse have been developed. Estimates of item and person parameters have been demonstrated to be biased for classical approaches when missing data are missing not at random (MNAR). In our study, we focus on parameter estimates of the structural model (i.e., the true regression coefficient when regressing competence on an explanatory variable), simulating data according to various missing data mechanisms. We found that model‐based approaches and ignoring missing values performed well in retrieving regression coefficients even when we induced missing data that were MNAR. Treating missing values as incorrect responses can lead to substantial bias. We demonstrate the validity of our approach empirically and discuss the relevance of our results.  相似文献   

12.
A paucity of research has compared estimation methods within a measurement invariance (MI) framework and determined if research conclusions using normal-theory maximum likelihood (ML) generalizes to the robust ML (MLR) and weighted least squares means and variance adjusted (WLSMV) estimators. Using ordered categorical data, this simulation study aimed to address these queries by investigating 342 conditions. When testing for metric and scalar invariance, Δχ2 results revealed that Type I error rates varied across estimators (ML, MLR, and WLSMV) with symmetric and asymmetric data. The Δχ2 power varied substantially based on the estimator selected, type of noninvariant indicator, number of noninvariant indicators, and sample size. Although some the changes in approximate fit indexes (ΔAFI) are relatively sample size independent, researchers who use the ΔAFI with WLSMV should use caution, as these statistics do not perform well with misspecified models. As a supplemental analysis, our results evaluate and suggest cutoff values based on previous research.  相似文献   

13.
The purpose of this study was to examine the behavior of 8 measures of fit used to evaluate confirmatory factor analysis models. This study employed Monte Carlo simulation to determine to what extent sample size, model size, estimation procedure, and level of nonnormality affected fit when polytomous data were analyzed. The 3 indexes least affected by the design conditions were the comparative fit index, incremental fit index, and nonnormed fit index, which were affected only by level of nonnormality. The measure of centrality was most affected by the design variables, with values of n2>. 10 for sample size, model size, and level of nonnormality and interaction effects for Model Size x Level of Nonnormality and Estimation x Level of Nonnormality. Findings from this study should alert applied researchers to exercise caution when evaluating model fit with nonnormal, polytomous data.  相似文献   

14.
A great obstacle for wider use of structural equation modeling (SEM) has been the difficulty in handling categorical variables. Two data sets with known structure between 2 related binary outcomes and 4 independent binary variables were generated. Four SEM strategies and resulting apparent validity were tested: robust maximum likelihood (ML), tetrachoric correlation matrix input followed by SEM ML analysis, SEM ML estimation for the sum of squares and cross-products (SSCP) matrix input obtained by the log-linear model that treated all variables as dependent, and asymptotic distribution-free (ADF) SEM estimation. SEM based on the SSCP matrix obtained by the log-linear model and SEM using robust ML estimation correctly identified the structural relation between the variables. SEM using ADF added an extra parameter. SEM based on tetrachoric correlation input did not specify the data generating process correctly. Apparent validity was similar for all models presented. Data transformation used in log-linear modeling can serve as an input for SEM.  相似文献   

15.
Research in covariance structure analysis suggests that nonnormal data will invalidate chi‐square tests and produce erroneous standard errors. However, much remains unknown about the extent to and the conditions under which highly skewed and kurtotic data can affect the parameter estimates, standard errors, and fit indices. Using actual kurtotic and skewed data and varying sample sizes and estimation methods, we found that (a) normal theory maximum likelihood (ML) and generalized least squares estimators were fairly consistent and almost identical, (b) standard errors tended to underestimate the true variation of the estimators, but the problem was not very serious for large samples (n = 1,000) and conservative (99%) confidence intervals, and (c) the adjusted chi‐square tests seemed to yield acceptable results with appropriate sample sizes.  相似文献   

16.
This study examined and compared various statistical methods for detecting individual differences in change. Considering 3 issues including test forms (specific vs. generalized), estimation procedures (constrained vs. unconstrained), and nonnormality, we evaluated 4 variance tests including the specific Wald variance test, the generalized Wald variance test, the specific likelihood ratio (LR) variance test, and the generalized LR variance test under both constrained and unconstrained estimation for both normal and nonnormal data. For the constrained estimation procedure, both the mixture distribution approach and the alpha correction approach were evaluated for their performance in dealing with the boundary problem. To deal with the nonnormality issue, we used the sandwich standard error (SE) estimator for the Wald tests and the Satorra–Bentler scaling correction for the LR tests. Simulation results revealed that testing a variance parameter and the associated covariances (generalized) had higher power than testing the variance solely (specific), unless the true covariances were zero. In addition, the variance tests under constrained estimation outperformed those under unconstrained estimation in terms of higher empirical power and better control of Type I error rates. Among all the studied tests, for both normal and nonnormal data, the robust generalized LR and Wald variance tests with the constrained estimation procedure were generally more powerful and had better Type I error rates for testing variance components than the other tests. Results from the comparisons between specific and generalized variance tests and between constrained and unconstrained estimation were discussed.  相似文献   

17.
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a familiar function while being only marginally less efficient than the full information ML (FIML) approach. Additional advantages of the TS approach include that it allows for easy incorporation of auxiliary variables and that it is more stable in smaller samples. The main disadvantage is that the standard errors and test statistics provided by the complete data routine will not be correct. Empirical approaches to finding the right corrections for the TS approach have failed to provide unequivocal solutions. In this article, correct standard errors and test statistics for the TS approach with missing completely at random and missing at random normally distributed data are developed and studied. The new TS approach performs well in all conditions, is only marginally less efficient than the FIML approach (and is sometimes more efficient), and has good coverage. Additionally, the residual-based TS statistic outperforms the FIML test statistic in smaller samples. The TS method is thus a viable alternative to FIML, especially in small samples, and its further study is encouraged.  相似文献   

18.
This study examined the effects of ignoring multilevel data structures in nonhierarchical covariance modeling using a Monte Carlo simulation. Multilevel sample data were generated with respect to 3 design factors: (a) intraclass correlation, (b) group and member configuration, and (c) the models that underlie the between-group and within-group variance components associated with multilevel data. Covariance models that ignored the multilevel structure were then fit to the data. Results indicated that when variables exhibit minimal levels of intraclass correlation, the chi-square model/data fit statistic, the parameter estimators, and the standard error estimators are relatively unbiased. However, as the level of intraclass correlation increases, the chi-square statistic, the parameters, and their standard errors all exhibit estimation problems. The specific group/member configurations as well as the underlying between-group and within-group model structures further exacerbate the estimation problems encountered in the nonhierarchical analysis of multilevel data.  相似文献   

19.
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is to use polychoric correlations and fit the models using methods such as unweighted least squares (ULS), maximum likelihood (ML), weighted least squares (WLS), or diagonally weighted least squares (DWLS). In this simulation evaluation we study the behavior of these methods in combination with polychoric correlations when the models are misspecified. We also study the effect of model size and number of categories on the parameter estimates, their standard errors, and the common chi-square measures of fit when the models are both correct and misspecified. When used routinely, these methods give consistent parameter estimates but ULS, ML, and DWLS give incorrect standard errors. Correct standard errors can be obtained for these methods by robustification using an estimate of the asymptotic covariance matrix W of the polychoric correlations. When used in this way the methods are here called RULS, RML, and RDWLS.  相似文献   

20.
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed‐score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the normality assumption, would be preferred, because it is asymptotically accurate regardless of the distribution of the data. In this article, an analytical formula for the standard error of linear observed‐score equating, which characterizes the effect of nonnormality, is obtained under elliptical distributions. Using three large‐scale real data sets as the populations, resampling studies are conducted to empirically evaluate the normal and general estimators of the standard error of linear observed‐score equating. The effect of sample size (50, 100, 250, or 500) and equating method (chained linear, Tucker, or Levine observed‐score equating) are examined. Results suggest that the general estimator has smaller bias than the normal estimator in all 36 conditions; it has larger standard error when the sample size is at least 100; and it has smaller root mean squared error in all but one condition. An R program is also provided to facilitate the use of the general estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号