首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size of a model has been shown to critically affect the goodness of approximation of the model fit statistic T to the asymptotic chi-square distribution in finite samples. It is not clear, however, whether this “model size effect” is a function of the number of manifest variables, the number of free parameters, or both. It is demonstrated by means of 2 Monte Carlo computer simulation studies that neither the number of free parameters to be estimated nor the model degrees of freedom systematically affect the T statistic when the number of manifest variables is held constant. Increasing the number of manifest variables, however, is associated with a severe bias. These results imply that model fit drastically depends on the size of the covariance matrix and that future studies involving goodness-of-fit statistics should always consider the number of manifest variables, but can safely neglect the influence of particular model specifications.  相似文献   

2.
The purpose of this study was to explore the influence of the number of targets specified on the quality of exploratory factor analysis solutions with a complex underlying structure and incomplete substantive measurement theory. Three Monte Carlo studies were performed based on the ratio of the number of observed variables to the number of underlying factors. Within each study, communality, sample size, and the number of targets were manipulated. Outcomes included a measure of congruence and a measure of variability with regard to the rotated pattern matrix. The magnitude of the main effect for the influence of the number of targets on congruence and variability ranged from moderate to large. The magnitude of the interaction between the number of targets and level of communality ranged from small to moderate with regard to congruence and variability. Consistent with theoretical expectations, the minimum number of targets to specify to be reasonably assured of obtaining an accurate solution varied across study conditions.  相似文献   

3.
4.
Minor cross-loadings on non-targeted factors are often found in psychological or other instruments. Forcing them to zero in confirmatory factor analyses (CFA) leads to biased estimates and distorted structures. Alternatively, exploratory structural equation modeling (ESEM) and Bayesian structural equation modeling (BSEM) have been proposed. In this research, we compared the performance of the traditional independent-clusters-confirmatory-factor-analysis (ICM-CFA), the nonstandard CFA, ESEM with the Geomin- or Target-rotations, and BSEMs with different cross-loading priors (correct; small- or large-variance priors with zero mean) using simulated data with cross-loadings. Four factors were considered: the number of factors, the size of factor correlations, the cross-loading mean, and the loading variance. Results indicated that ICM-CFA performed the worst. ESEMs were generally superior to CFAs but inferior to BSEM with correct priors that provided the precise estimation. BSEM with large- or small-variance priors performed similarly while the prior mean for cross-loadings was more important than the prior variance.  相似文献   

5.
Although methodology articles have increasingly emphasized the need to analyze data from two members of a dyad simultaneously, the most popular method in substantive applications is to examine dyad members separately. This might be due to the underappreciation of the extra information simultaneous modeling strategies can provide. Therefore, the goal of this study was to compare multiple growth curve modeling approaches for longitudinal dyadic data (LDD) in both structural equation modeling and multilevel modeling frameworks. Models separately assessing change over time for distinguishable dyad members are compared to simultaneous models fitted to LDD from both dyad members. Furthermore, we compared the simultaneous default versus dependent approaches (whether dyad pairs’ Level 1 [or unique] residuals are allowed to covary and differ in variance). Results indicated that estimates of variance and covariance components led to conflicting results. We recommend the simultaneous dependent approach for inferring differences in change over time within a dyad.  相似文献   

6.
In 1958, Page conducted a large multiple experiment: 74 teachers gave one class its normal quiz, scored and graded it in the usual way, assigned three comment treatments to students in stratified-random blocks, and then reported scores from the next objective quiz. There was a highly significant effect of comments. Others have borrowed some study features, with results that have appeared mixed. Here, a critical overall analysis shows much agreement with the ordered hypothesis of comments and with specified comments over no comments (p < .01). Despite great variety of designs and subtlety of effect, results broadly support teachers who comment. A typical effect size is demonstrated for ranks, and lessons are taken about the proper strategies for designs and the future of such research.  相似文献   

7.
    
Multilevel Structural equation models are most often estimated from a frequentist framework via maximum likelihood. However, as shown in this article, frequentist results are not always accurate. Alternatively, one can apply a Bayesian approach using Markov chain Monte Carlo estimation methods. This simulation study compared estimation quality using Bayesian and frequentist approaches in the context of a multilevel latent covariate model. Continuous and dichotomous variables were examined because it is not yet known how different types of outcomes—most notably categorical—affect parameter recovery in this modeling context. Within the Bayesian estimation framework, the impact of diffuse, weakly informative, and informative prior distributions were compared. Findings indicated that Bayesian estimation may be used to overcome convergence problems and improve parameter estimate bias. Results highlight the differences in estimation quality between dichotomous and continuous variable models and the importance of prior distribution choice for cluster-level random effects.  相似文献   

8.
    
Although much is known about the performance of recent methods for inference and interval estimation for indirect or mediated effects with observed variables, little is known about their performance in latent variable models. This article presents an extensive Monte Carlo study of 11 different leading or popular methods adapted to structural equation models with latent variables. Manipulated variables included sample size, number of indicators per latent variable, internal consistency per set of indicators, and 16 different path combinations between latent variables. Results indicate that some popular or previously recommended methods, such as the bias-corrected bootstrap and asymptotic standard errors had poorly calibrated Type I error and coverage rates in some conditions. Likelihood-based confidence intervals, the distribution of the product method, and the percentile bootstrap emerged as leading methods for both interval estimation and inference, whereas joint significance tests and the partial posterior method performed well for inference.  相似文献   

9.
The purpose of the present study was to validate an existing school environment instrument, the School Level Environment Questionnaire (SLEQ). The SLEQ consists of 56 items, with seven items in each of eight scales. One thousand, one hundred and six (1106) teachers in 59 elementary schools in a southwestern USA public school district completed the instrument. An exploratory factor analysis was undertaken for a random sample of half of the completed surveys. Using principal axis factoring with oblique rotation, this analysis suggested that 13 items should be dropped and that the remaining 43 items could best be represented by seven rather than eight factors. A confirmatory factor analysis was run with the other half of the original sample using structural equation modeling. Examination of the fit indices indicated that the model came close to fitting the data, with goodness-of-fit (GOF) coefficients just below recommended levels. A second model was then run with two of the seven factors, with their associated items removed. That left five factors with 35 items. Model fit was improved. A third model was tried, using the same five factors with 35 items but with correlated residuals between some of the items within a factor. This model seemed to fit the data well, with GOF coefficients in recommended ranges. These results led to a refined, more parsimonious version of the SLEQ that was then used in a larger study. Future research is needed to see if this model would fit other samples in different elementary schools and in secondary schools both in the USA and in other countries. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
    
Causal inference in mediation analysis offers counterfactually based causal definitions of direct and indirect effects, drawing on research by Robins, Greenland, Pearl, VanderWeele, Vansteelandt, Imai, and others. This type of mediation effect estimation is little known and seldom used among analysts using structural equation modeling (SEM). The aim of this article is to describe the new analysis opportunities in a way that is accessible to SEM analysts and show examples of how to perform the analyses. An application is presented with an extension to a latent mediator measured with multiple indicators.  相似文献   

11.
    
Appropriate model specification is fundamental to unbiased parameter estimates and accurate model interpretations in structural equation modeling. Thus detecting potential model misspecification has drawn the attention of many researchers. This simulation study evaluates the efficacy of the Bayesian approach (the posterior predictive checking, or PPC procedure) under multilevel bifactor model misspecification (i.e., ignoring a specific factor at the within level). The impact of model misspecification on structural coefficients was also examined in terms of bias and power. Results showed that the PPC procedure performed better in detecting multilevel bifactor model misspecification, when the misspecification became more severe and sample size was larger. Structural coefficients were increasingly negatively biased at the within level, as model misspecification became more severe. Model misspecification at the within level affected the between-level structural coefficient estimates more when data dependency was lower and the number of clusters was smaller. Implications for researchers are discussed.  相似文献   

12.
    
Researchers require methods for evaluating whether statistical results are credible and thus, worthy of interpretation. An examination of fungible parameters estimates is a method in which the veracity of inferences can be strengthened or weakened by quantifying the level of support for individual parameter estimates as measured by the likelihood function. This new approach aims to overcome some of the limitations of previous methods and is based on a simplified computational and conceptual understanding of a fungible parameter estimate analysis. Additionally, this computational approach has been implemented in the R package psindex. This package provides a user-friendly, and free method for statisticians and applied researchers to investigate parameter stability in their own models using an analysis of fungible parameter estimates. Finally, an applied example illustrates fungible parameter estimate analysis in practice using the psindex package. General guidelines for interpretation are provided.  相似文献   

13.
    
Abstract

Research suggests that certain characteristics of survey items may impact participants’ responses. In this study we investigated the impact of several of these characteristics: vague wording, question-versus-statement phrasing, and full-versus-partial labeling of response options. We manipulated survey items per these characteristics and randomly administered the manipulated and nonmanipulated items to two groups of respondents. We examined differences in responses via multiple groups confirmatory factor analysis (MGCFA) and found differences in factor means, slopes (indicating differing discrimination), and/or intercepts (indicating differing response extremity) for all conditions. Implications for survey construction are discussed.  相似文献   

14.
Fitting a large structural equation modeling (SEM) model with moderate to small sample sizes results in an inflated Type I error rate for the likelihood ratio test statistic under the chi-square reference distribution, known as the model size effect. In this article, we show that the number of observed variables (p) and the number of free parameters (q) have unique effects on the Type I error rate of the likelihood ratio test statistic. In addition, the effects of p and q cannot be fully explained using degrees of freedom (df). We also evaluated the performance of 4 correctional methods for the model size effect, including Bartlett’s (1950), Swain’s (1975), and Yuan’s (2005) corrected statistics, and Yuan, Tian, and Yanagihara’s (2015) empirically corrected statistic. We found that Yuan et al.’s (2015) empirically corrected statistic generally yields the best performance in controlling the Type I error rate when fitting large SEM models.  相似文献   

15.
Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group.  相似文献   

16.
    
In this study, we contrast two competing approaches, not previously compared, that balance the rigor of CFA/SEM with the flexibility to fit realistically complex data. Exploratory SEM (ESEM) is claimed to provide an optimal compromise between EFA and CFA/SEM. Alternatively, a family of three Bayesian SEMs (BSEMs) replace fixed-zero estimates with informative, small-variance priors for different subsets of parameters: cross-loadings (CL), residual covariances (RC), or CLs and RCs (CLRC). In Study 1, using three simulation studies, results showed that (1) BSEM-CL performed more closely to ESEM; (2) BSEM-CLRC did not provide more accurate model estimation compared with BSEM-CL; (3) BSEM-RC provided unstable estimation; and (4) different specifications of targeted values in ESEM and informative priors in BSEM have significant impacts on model estimation. The real data analysis (Study 2) showed that the differences in estimation between different models were largely consistent with those in Study1 but somewhat smaller.  相似文献   

17.
    
In many applications of multilevel modeling, group-level (L2) variables for assessing group-level effects are generated by aggregating variables from a lower level (L1). However, the observed group mean might not be a reliable measure of the unobserved true group mean. In this article, we propose a Bayesian approach for estimating a multilevel latent contextual model that corrects for measurement error and sampling error (i.e., sampling only a small number of L1 units from a L2 unit) when estimating group-level effects of aggregated L1 variables. Two simulation studies were conducted to compare the Bayesian approach with the maximum likelihood approach implemented in Mplus. The Bayesian approach showed fewer estimation problems (e.g., inadmissible solutions) and more accurate estimates of the group-level effect than the maximum likelihood approach under problematic conditions (i.e., small number of groups, predictor variable with a small intraclass correlation). An application from educational psychology is used to illustrate the different estimation approaches.  相似文献   

18.
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's advantages relative to MLM approaches for multilevel mediation analysis has been provided. Nor has it been demonstrated that MSEM performs adequately for mediation analysis in an absolute sense. This study addresses these gaps and finds that the MSEM method outperforms 2 MLM-based techniques in 2-level models in terms of bias and confidence interval coverage while displaying adequate efficiency, convergence rates, and power under a variety of conditions. Simulation results support prior theoretical work regarding the advantages of MSEM over MLM for mediation in clustered data.  相似文献   

19.
    
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides reasonably accurate Type I errors even in small samples and for large models, clearly outperforming the current standard, that is, the likelihood ratio (LR) test. When data shows excess kurtosis, MV-corrected SRMR p values are only accurate in small models (p = 10), or in medium-sized models (p = 30) if no skewness is present and sample sizes are at least 500. Overall, when data are not normal, the MV-corrected LR test seems to outperform the MV-corrected SRMR. We elaborate on these findings by showing that the asymptotic approximation to the mean of the SRMR sampling distribution is quite accurate, while the asymptotic approximation to the standard deviation is not.  相似文献   

20.
    
In order to analyze intensive longitudinal data collected across multiple individuals, researchers frequently have to decide between aggregating all individuals or analyzing each individual separately. This paper presents an R package, gimme, which allows for the automatic specification of individual-level structural equation models that combine group-, subgroup-, and individual-level information. This R package is a complement of the GIMME program currently available via a combination of MATLAB and LISREL. By capitalizing on the flexibility of R and the capabilities of the existing structural equation modeling package lavaan, gimme allows for the automated specification and estimation of group-, subgroup-, and individual-level relations in time series data from within a structural equation modeling framework. Applications include daily diary data as well as functional magnetic resonance imaging data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号