首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective was to offer guidelines for applied researchers on how to weigh the consequences of errors made in evaluating measurement invariance (MI) on the assessment of factor mean differences. We conducted a simulation study to supplement the MI literature by focusing on choosing among analysis models with different number of between-group constraints imposed on loadings and intercepts of indicators. Data were generated with varying proportions, patterns, and magnitudes of differences in loadings and intercepts as well as factor mean differences and sample size. Based on the findings, we concluded that researchers who conduct MI analyses should recognize that relaxing as well as imposing constraints can affect Type I error rate, power, and bias of estimates in factor mean differences. In addition, fit indexes can be misleading in making decisions about constraints of loadings and intercepts. We offer suggestions for making MI decisions under uncertainty when assessing factor mean differences.  相似文献   

2.
Nonlinear models are effective tools for the analysis of longitudinal data. These models provide a flexible means for describing data that follow complex forms of change. Exponential and logistic functions that include a parameter to represent an asymptote, for instance, are useful for describing responses that tend to level off with time. There are forms of nonlinear latent curve models and nonlinear mixed-effects model that are equivalent, and so given the same set of data, growth function, distributional assumptions, and method of estimation, the 2 models yield equivalent results. There are also forms that are strikingly different and can yield different interpretations for a given set of data. This article discusses cases in which nonlinear mixed-effects models and nonlinear latent curve models are equivalent and those in which they are different and clarifies the estimation needs of the different models. Examples based on empirical data help to illustrate these points.  相似文献   

3.
When using multiple imputation in the analysis of incomplete data, a prominent guideline suggests that more than 10 imputed data values are seldom needed. This article calls into question the optimism of this guideline and illustrates that important quantities (e.g., p values, confidence interval half-widths, and estimated fractions of missing information) suffer from substantial imprecision with a small number of imputations. Substantively, a researcher can draw categorically different conclusions about null hypothesis rejection, estimation precision, and missing information in distinct multiple imputation runs for the same data and analysis with few imputations. This article explores the factors associated with this imprecision, demonstrates that precision improves by increasing the number of imputations, and provides practical guidelines for choosing a reasonable number of imputations to reduce imprecision for each of these quantities.  相似文献   

4.
This Monte Carlo study investigated the impacts of measurement noninvariance across groups on major parameter estimates in latent growth modeling when researchers test group differences in initial status and latent growth. The average initial status and latent growth and the group effects on initial status and latent growth were investigated in terms of Type I error and bias. The location and magnitude of noninvariance across groups was related to the location and magnitude of bias and Type I error in the parameter estimates. That is, noninvariance in factor loadings and intercepts was associated with the Type I error inflation and bias in the parameter estimates of the slope factor (or latent growth) and the intercept factor (or initial status), respectively. As noninvariance became large, the degree of Type I error and bias also increased. On the other hand, a correctly specified second-order latent growth model yielded unbiased parameter estimates and correct statistical inferences. Other findings and implications on future studies were discussed.  相似文献   

5.
The study of measurement invariance in latent profile analysis (LPA) indicates whether the latent profiles differ across known subgroups (e.g., gender). The purpose of the present study was to examine the impact of noninvariance on the relative bias of LPA parameter estimates and on the ability of the likelihood ratio test (LRT) and information criteria statistics to reject the hypothesis of invariance. A Monte Carlo simulation study was conducted in which noninvariance was defined as known group differences in the indicator means in each profile. Results indicated that parameter estimates were biased in conditions with medium and large noninvariance. The LRT and AIC detected noninvariance in most conditions with small sample sizes, while the BIC and adjusted BIC needed larger sample sizes to detect noninvariance. Implications of the results are discussed along with recommendations for future research.  相似文献   

6.
Current practices for growth mixture modeling emphasize the importance of the proper parameterization and number of classes, but the impact of these decisions on latent class composition and the substantive implications has not been thoroughly addressed. Using measures of behavior from 575 middle school students, we compared the results of several multilevel growth mixture models. Results indicated a dramatic shift in class assignment as the models allowed class-varying parameters, with different substantive interpretations and resulting typologies. This research suggests that using variability as a criterion for class differences in a behavior typology can dramatically impact latent class membership. This study describes decisions and results from testing for noninvariance, with particular emphasis on how decisions about the nature of within-person variance can affect resulting subgroups and model parameters.  相似文献   

7.
This simulation study examines the efficacy of multilevel factor mixture modeling (ML FMM) for measurement invariance testing across unobserved groups when the groups are at the between level of multilevel data. To this end, latent classes are generated with class-specific item parameters (i.e., factor loading and intercept) across the between-level classes. The efficacy of ML FMM is evaluated in terms of class enumeration, class assignment, and the detection of noninvariance. Various classification criteria such as Akaike’s information criterion, Bayesian information criterion, and bootstrap likelihood ratio tests are examined for the correct enumeration of between-level latent classes. For the detection of measurement noninvariance, free and constrained baseline approaches are compared with respect to true positive and false positive rates. This study evidences the adequacy of ML FMM. However, its performance heavily depends on the simulation factors such as the classification criteria, sample size, and the magnitude of noninvariance. Practical guidelines for applied researchers are provided.  相似文献   

8.
First-order latent growth curve models (FGMs) estimate change based on a single observed variable and are widely used in longitudinal research. Despite significant advantages, second-order latent growth curve models (SGMs), which use multiple indicators, are rarely used in practice, and not all aspects of these models are widely understood. In this article, our goal is to contribute to a better understanding of theoretical and practical differences between FGMs and SGMs. We define the latent variables in FGMs and SGMs explicitly on the basis of latent state–trait (LST) theory and discuss insights that arise from this approach. We show that FGMs imply a strict trait-like conception of the construct under study, whereas SGMs allow for both trait and state components. Based on a simulation study and empirical applications to the Center for Epidemiological Studies Depression Scale (Radloff, 1977 Radloff, L. S. 1977. The CES–D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1: 385401. [Crossref], [Web of Science ®] [Google Scholar]) we illustrate that, as an important practical consequence, FGMs yield biased reliability estimates whenever constructs contain state components, whereas reliability estimates based on SGMs were found to be accurate. Implications of the state–trait distinction for the measurement of change via latent growth curve models are discussed.  相似文献   

9.
When time-intensive longitudinal data are used to study daily-life dynamics of psychological constructs (e.g., well-being) within persons over time (e.g., by means of experience sampling methodology), the measurement model (MM)—indicating which constructs are measured by which items—can be affected by time- or situation-specific artifacts (e.g., response styles and altered item interpretation). If not captured, these changes might lead to invalid inferences about the constructs. Existing methodology can only test for a priori hypotheses on MM changes, which are often absent or incomplete. Therefore, we present the exploratory method “latent Markov factor analysis” (LMFA), wherein a latent Markov chain captures MM changes by clustering observations per subject into a few states. Specifically, each state gathers validly comparable observations, and state-specific factor analyses reveal what the MMs look like. LMFA performs well in recovering parameters under a wide range of simulated conditions, and its empirical value is illustrated with an example.  相似文献   

10.
Growth mixture models combine latent growth curve models and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. Analyses based on these models are becoming quite common in social and behavioral science research because of recent advances in computing, the availability of specialized statistical programs, and the ease of programming. In this article, we show how mixture models can be fit to examine the presence of multiple latent classes by algorithmically grouping or clustering individuals who follow the same estimated growth trajectory based on an evaluation of individual case residuals. The approach is illustrated using empirical longitudinal data along with an easy to use computerized implementation.  相似文献   

11.
Individual growth trajectories of psychological phenomena are often theorized to be nonlinear. Additionally, individuals’ measurement schedules might be unique. In a structural equation framework, latent growth curve model (LGM) applications typically have either (a) modeled nonlinearity assuming some degree of balance in measurement schedules, or (b) accommodated truly individually varying time points, assuming linear growth. This article describes how to fit 4 popular nonlinear LGMs (polynomial, shape-factor, piecewise, and structured latent curve) with truly individually varying time points, via a definition variable approach. The extension is straightforward for certain nonlinear LGMs (e.g., polynomial and structured latent curve) but in the case of shape-factor LGMs requires a reexpression of the model, and in the case of piecewise LGMs requires introduction of a general framework for imparting piecewise structure, along with tools for its automation. All 4 nonlinear LGMs with individually varying time scores are demonstrated using an empirical example on infant weight, and software syntax is provided. The discussion highlights some advantages of modeling nonlinear growth within structural equation versus multilevel frameworks, when time scores individually vary.  相似文献   

12.
13.
Multilevel and latent growth modeling analysis (GMA) is often used to compare independent groups in linear random slopes of outcomes over time, particularly in randomized controlled trials. The unstandardized coefficient for the effect of group on the slope from a linear GMA can be transformed into a model-estimated effect size for the group difference at the end of a study. Because effect sizes vary nonlinearly in quadratic GMA, the effect size at the end of a study using quadratic GMA cannot be derived from a single coefficient, and cannot be used to estimate effect sizes at intermediate time points with backward extrapolation. This article formulates equations and associated input commands in Mplus for time-varying effect sizes for quadratic GMA. Illustrative analyses that produced these time-varying effect sizes were presented, and a Monte Carlo study found that bias in the effect sizes and their confidence intervals was ignorable.  相似文献   

14.
This study investigated the optimal strategy for model specification search under the latent growth modeling (LGM) framework, specifically on searching for the correct polynomial mean or average growth model when there is no a priori hypothesized model in the absence of theory. In this simulation study, the effectiveness of different starting models on the search of the true mean growth model was investigated in terms of the mean and within-subject variance-covariance (V-C) structure model. The results showed that specifying the most complex (i.e., unstructured) within-subject V-C structure with the use of LRT, ΔAIC, and ΔBIC achieved the highest recovery rate (>85%) of the true mean trajectory. Implications of the findings and limitations are discussed.  相似文献   

15.
This article applies Bollen’s (1996) 2-stage least squares/instrumental variables (2SLS/IV) approach for estimating the parameters in an unconditional and a conditional second-order latent growth model (LGM). First, the 2SLS/IV approach for the estimation of the means and the path coefficients in a second-order LGM is derived. An empirical example is then used to show that 2SLS/IV yields estimates that are similar to maximum likelihood (ML) in the estimation of a conditional second-order LGM. Three subsequent simulation studies are then presented to show that the new approach is as accurate as ML and that it is more robust against misspecifications of the growth trajectory than ML. Together, these results suggest that 2SLS/IV should be considered as an alternative to the commonly applied ML estimator.  相似文献   

16.
When conducting longitudinal research, the investigation of between-individual differences in patterns of within-individual change can provide important insights. In this article, we use simulation methods to investigate the performance of a model-based exploratory data mining technique—structural equation model trees (SEM trees; Brandmaier, Oertzen, McArdle, & Lindenberger, 2013)—as a tool for detecting population heterogeneity. We use a latent-change score model as a data generation model and manipulate the precision of the information provided by a covariate about the true latent profile as well as other factors, including sample size, under the possible influences of model misspecifications. Simulation results show that, compared with latent growth curve mixture models, SEM trees might be very sensitive to model misspecification in estimating the number of classes. This can be attributed to the lower statistical power in identifying classes, resulting from smaller differences of parameters prescribed by the template model between classes.  相似文献   

17.
A multiple testing approach is outlined that can be used to examine the assumption of underlying normal variables in latent variable models with categorical indicators. The method is based on an application of the increasingly popular Benjamini–Hochberg multiple testing procedure, and is readily applicable with widely circulated software. The discussed method is especially useful for ascertaining this assumption that is very often made in research based on structural equation modeling using models containing discrete outcomes. The described approach is illustrated with numerical data.  相似文献   

18.
In latent growth modeling, measurement invariance across groups has received little attention. Considering that a group difference is commonly of interest in social science, a Monte Carlo study explored the performance of multigroup second-order latent growth modeling (MSLGM) in testing measurement invariance. True positive and false positive rates in detecting noninvariance across groups in addition to bias estimates of major MSLGM parameters were investigated. Simulation results support the suitability of MSLGM for measurement invariance testing when either forward or iterative likelihood ratio procedure is applied.  相似文献   

19.
The purpose of this study is to provide guidance on a process for including latent class predictors in regression mixture models. We first examine the performance of current practice for using the 1-step and 3-step approaches where the direct covariate effect on the outcome is omitted. None of the approaches show adequate estimates of model parameters. Given that Step 1 of the 3-step approach shows adequate results in class enumeration, we suggest using an alternative approach: (a) decide the number of latent classes without predictors of latent classes, and (b) bring the latent class predictors into the model with the inclusion of hypothesized direct covariate effects. Our simulations show that this approach leads to good estimates for all model parameters. The proposed approach is demonstrated by using empirical data to examine the differential effects of family resources on students’ academic achievement outcome. Implications of the study are discussed.  相似文献   

20.
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact educational policy decisions. A Monte Carlo simulation study was conducted to examine the accuracy of six information-based criteria (i.e., AIC, CAIC, AICC, BIC, nBIC, and HQIC) when selecting among various growth trajectories modeled using LGM under different sample size, number of time points, and growth trajectory scenarios. The accuracy of the information criteria generally improved as sample size increased. The cubic and linear growth models were distinguished most accurately by the information criteria. All of the nonlinear models were more easily distinguished as the number of time points increased. The comparative performance of the six information criteria was dependent upon the manipulated conditions. Implications of the findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号