首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
棒球挥击速度的研究   总被引:1,自引:0,他引:1  
应用高速动态分析仪对部分运动员挥击速度现状的解析参数进行了研究.得出从启动──中球的挥击时间:斜碰撞时是在棒速下降时进行的.现要求棒的挥击时间在100ms以内,投手球飞行至本垒前3.4m左右时棒开始启挥.  相似文献   

2.
Abstract

The purpose of this study was to determine the minimum and maximum velocity of the tennis ball for selected heights of contact and angles of projection and wall impact points during the tennis serve. By use of a ballistics formula, a number of variables which determine the trajectory of the tennis ball were programed for the computer. Tables were tabulated and are available for all data gathered. Angles of projection from the horizontal were selected to range from ?5° to 15° in increments of 1°. Velocity of the serve ranged from a low of 30 ft. per second to a high of 176 ft. per second. Finally, the height of the contact point ranged from a low of 6.0 ft. to a high of 9.0 ft. in increments of .5 ft. Height of the ball when crossing the net (impact point on the practice court) ranged from a low of 3.01 ft. to a high of 8.47 ft. The minimum height at crossing was achieved at 6.5 ft. service height, a ?3° angle of projection and time from baseline of .30 sec. This is a relatively high velocity serve. In contrast, the maximum height over the net of 8.47 ft. was achieved at an 8.5 ft. service height, a 15° angle of projection, and time of .79 sec. to point of impact. These data indicate that at higher service heights and slower velocities, a ball can hit the impact area as much as 8.47 ft. from the floor, 4.47 ft. above the net and still remain in the service court.  相似文献   

3.
Abstract

The purpose of this study was to examine variations in ground reaction forces and selected lower extremity kinematics during the stride and swing phases of batting. High speed photography (100 fps) employing direct linear transformation methodology and a force plate were used to record three-dimensional kinematic and kinetic data for 7 female fast pitch softball batters. Mean vertical forces (Fz) of the right or rear foot increased to approximately 1 BW during the stride. Once the left or forward foot made contact with the ground after completion of the stride, right Fz forces decreased to .43 BW while left Fz forces rapidly increased to 1.6 BW at contact. The mean decrease in right Fz forces from peak force until contact was 55%, and the ratio of left to right Fz forces; at impact was 3.67:1. Right mediolateral forces (Fx) were exerted laterally, away from the batter, and were responsible for initiating movement of the body toward the pitched ball. As the left foot made contact with the ground at completion of the stride, left Fx forces were exerted laterally toward the pitched ball. The reaction to these forces retarded the batter's forward momentum, increased stability, and caused the left hip and knee to extend as contact approached. Right and left anteroposterior forces (Fy) acted in opposite directions (right foot pushing backward, left foot pushing forward), and were responsible for rotating the hips and upper body in a counterclockwise direction toward the pitched ball. Horizontal angular deceleration of both thighs just prior to contact was due, in part, to a decrease in these forces. These data may prove helpful when attempting to identify atypical batting patterns, and when considering improvements in shoe design. In the latter instance, force production and stability may be enhanced by aligning the cleats along the lines of action of the applied resultant shear forces.  相似文献   

4.
Abstract

The inability of the between-bowlers methodology to control parameters external to technique could lead to erroneous significant and non-significant associations being reported between fast-bowling technique and ball release speed. Using Pearson's product – moment correlation, we first examined the effectiveness of a within-bowler methodology to identify associations between technique and ball release speed of an elite semi-open fast bowler over 20 deliveries. These results were compared with associations identified from a between-bowlers methodology in which 20 single-performance trials bowled by elite fast bowlers adopting a semi-open shoulder alignment were collated. Sufficient variation was observed in within-bowler ball release speed to allow f relationships to be identified between technique and ball release speed. Although greater variation in bowling technique parameters was observed in the between-bowlers methodology, no associations were identified between technique and ball release speed. Multiple stepwise regression analysis showed that 87.5% of the within-bowler variation in ball release speed can be attributed to run-up velocity, angular velocity of the bowling arm, vertical velocity of the non-bowling arm, and stride length. The within-bowler methodology provided significant detailed information about the individual bowler that the between-bowlers methodology overlooked, forming the basis of a performance enhancement programme. It is recommended that within-bowler methodology be used in future investigation of technique relationships.  相似文献   

5.
Abstract

The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic–hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.  相似文献   

6.
Abstract

Velocity coupling denotes a perceptual motor behaviour known to occur during coincidence timing tasks. Individuals have been shown to increase their effector limb speed with increases in stimulus speed during interceptive tasks. However, little is known about the physiological effects of velocity coupling. The aim of this study was to determine the physiological cost of velocity coupling during tennis groundstrokes. Eight male and eight female competitive tennis players volunteered to perform three 4-min bouts of continuous groundstrokes against balls projected from a tennis ball machine at speeds of 18, 22, and 27 m · s?1 (65, 79, and 97 km · h?1) and a frequency of 14 balls per minute, the order of which was counterbalanced. Breath-by-breath pulmonary gas exchange, heart rate, locomotion time, and limb acceleration were measured throughout each of the 4-min bouts. Capillary blood samples (for blood lactate analysis), rating of perceived exertion, and difficulty rating were taken at the end of each bout. Increasing ball speed did not influence the locomotion time between groundstrokes but did result in a bilateral increase in both the mean upper- and lower-limb acceleration (all P < 0.05). Velocity coupling behaviour increased oxygen uptake, blood lactate concentration, heart rate, rating of perceived exertion, and perceived task difficulty (all P < 0.05). It would appear, therefore, that velocity coupling influenced tennis groundstroke behaviour and indirectly modified the concurrent cardiopulmonary and metabolic responses.  相似文献   

7.
Abstract

The purpose of this study was to determine the optimum release conditions for the free throw in men's basketball. The study used hundreds of thousands of three-dimensional simulations of basketball trajectories. Five release variables were studied: release height, release speed, launch angle, side angle, and back spin. The free throw shooter was assumed to shoot at 70% and to release the ball 2.134 m (7 ft) above the ground. We found that the shooter should place up to 3 Hz of back spin on the ball, should aim the ball towards the back of the ring, and should launch the ball at 52° to the horizontal. We also found that it is desirable to release the ball as high above the ground as possible, as long as this does not adversely affect the player's launch consistency.  相似文献   

8.
9.
Softballs     
There is currently much debate about the safety of the sport of softball. Batted‐ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted‐ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted‐ball speed. Eleven aluminum multi‐wall, three aluminum single‐wall and two composite softball bats were tested with mid‐compression polyurethane softballs averaging 1721 ±62 N/6.4 mm to represent the relative bat‐ball performance for the sport of slow‐pitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted‐ball speeds ranged from 80 to 145 km.h‐1. Using composite softball bats, batted‐ball speeds ranged from 146 to 161 km.h‐1. The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.  相似文献   

10.
Purpose

The purposes of this study were to: (a) examine the effect of experience and goal constraints (speed, accuracy) on kicking patterns; (b) determine if effective striking mass was independent of ankle velocity at impact; and (c) determine the accuracy of kicks relative to independent factors.

Method

Twenty participants were recruited to kick at 3 different velocities with and without an accuracy requirement. Multivariate analysis of variance determined if relative timing of joint angular velocities changed during the kick. Chi-square analysis determined if calculated effective mass was independent of ankle velocity at impact. Analysis of variance (ANOVA) was used to examine differences in absolute constant error and variable error according to independent factors.

Results

Results indicated that experience and speed affect absolute timing of joint velocities with no changes in the relative timing of peak joint velocity across independent factors. Chi-square analysis indicated that calculated effective mass is not independent of ankle velocity. ANOVA indicated that experienced performers displayed less variability error than did inexperienced performers.

Conclusion

It was concluded that: (a) Experience, velocity, and accuracy do not affect the relative timing of kicks; (b) kickers trade ankle velocity at impact for greater effective striking mass and ball velocity; and (c) variability in ball placement is affected by experience.  相似文献   

11.
Abstract

The current investigation aimed to determine whether there are differences in ball velocity and 3D kinematics when performing maximal kicks with the dominant and non-dominant limbs. Seventeen male academy soccer players performed maximal speed place kicks with their dominant and the non-dominant limbs. The 3D kinematics of the lower extremities were obtained using a 10-camera motion capture system operating at 500 Hz. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes and then contrasted using paired t-tests. Significantly higher ball velocities were obtained with the dominant limb. Foot linear velocity and knee extension velocity at ball contact were also found to be significantly greater in the dominant limb. That reduced ball velocities were observed between kicking limbs highlights the potential performance detriments that may occur when kicking with the non-dominant limb; thus, it is recommended that additional bilateral training be undertaken in order to attenuate this and improve overall kicking performance.  相似文献   

12.
Abstract

The dynamic properties of six types of tennis balls were measured using a force platform and high-speed digital video images of ball impacts on rigidly clamped tennis rackets. It was found that the coefficient of restitution reduced with velocity for impacts on a rigid surface or with a rigidly clamped tennis racket. Pressurized balls had the highest coefficient of restitution, which decreased by 20% when punctured. Pressureless balls had a coefficient of restitution approaching that of a punctured ball at high speeds. The dynamic stiffness of the ball or the ball-racket system increased with velocity and pressurized balls had the highest stiffness, which decreased by 35% when punctured. The characteristics of pressureless balls were shown to be similar to those of punctured balls at high velocity and it was found that lowering the string tension produced a smaller range of stiffness or coefficient of restitution. It was hypothesized that players might consider high ball stiffness to imply a high coefficient of restitution. Plots of coefficient of restitution versus stiffness confirmed the relationship and it was found that, generally, pressurized balls had a higher coefficient of restitution and stiffness than pressureless balls. The players might perceive these parameters through a combination of sound, vibration and perception of ball speed off the racket.  相似文献   

13.
Abstract

Achieving a high ball velocity is important during soccer shooting, as it gives the goalkeeper less time to react, thus improving a player's chance of scoring. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity using regression analyses. Maximal instep kicks were obtained from 22 academy-level soccer players using a 10-camera motion capture system sampling at 500 Hz. Three-dimensional kinematics of the lower extremity segments were obtained. Regression analysis was used to identify the kinematic parameters associated with the development of ball velocity. A single biomechanical parameter; knee extension velocity of the kicking limb at ball contact Adjusted R2 = 0.39, p ≤ 0.01 was obtained as a significant predictor of ball-velocity. This study suggests that sagittal plane knee extension velocity is the strongest contributor to ball velocity and potentially overall kicking performance. It is conceivable therefore that players may benefit from exposure to coaching and strength techniques geared towards the improvement of knee extension angular velocity as highlighted in this study.  相似文献   

14.
Abstract

This study compared the amount of spin imparted to a tennis ball during impact with conventionally and diagonally strung tennis rackets. Balls were projected at the rackets at an angle of approximately 45°. The head of each racket was oriented vertically and clamped to eliminate any influence that deformations of the frame would have on the forces transmitted to the ball during impact. Ten multiple-image photographs (five using a relatively slow ball velocity and five using a relatively fast ball velocity) were taken of a ball approaching, striking, and leaving the rackets.

For similar pre-impact conditions, it was found that the angular impulse of the contact force applied to the ball (and hence the amount of spin) was almost identical for the two string configurations. Possible explanations of this finding are discussed.  相似文献   

15.
Abstract

The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors.  相似文献   

16.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

17.
ABSTRACT

When executed correctly, swing bowling has the potential to influence the outcome of a cricket match, yet little is known about the required bowling action and ball flight characteristics. This study aimed to describe the bowling action and initial ball flight characteristics as well as to identify variables that may be associated with increased swing in pathway and high-performance medium and fast pace bowlers. A 17-camera Vicon motion analysis system captured retro-reflective markers placed on the upper-body of participants and new cricket balls to quantify bowling action and initial ball flight kinematics. Bowlers delivered the ball with their forearm and hand angled in the direction of intended swing with an extended wrist flexing through the point of ball release. Bowlers who produced more swing had increased seam stability, possibly linked to a lower wrist and ball angular velocity. It is believed that swing increases with seam stability, however, optimal ranges may exist for seam azimuth angle, ball angular velocity and release speed. These findings may assist coaches to optimise the performance of bowlers, however, future research should use bowlers who play at higher levels to investigate swing bowling at greater speeds.  相似文献   

18.
Abstract

Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the “Front Foot” and “Reverse” styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

19.
Abstract

A completely general three-dimensional dynamic model is presented for the motion of basketball shots that may contact the rim, the backboard, the bridge between the rim and board, and possibly the board and the bridge simultaneously. Non-linear ordinary differential equations with six degrees of freedom describe the ball angular velocity and ball centre position. The model includes radial ball compliance and damping and contains five sub-models: purely gravitational flight, and ball – rim, ball – bridge, ball – board, and ball – bridge – board contact. Each contact sub-model has both slipping and non-slipping motions. Switching between the sub-models depends on the reaction force at, and velocity of, the contact point. Although the model can be used to study shots from any point on the court, we here use it to study the sets of free throw release angle, velocity, angular velocity, and lateral deviation angle that result in success (capture), as well as underhand free throws and those using an under-inflated ball. Free throw shots with larger backspin, lower inflation pressures, and underhand release conditions are shown to result in larger capture percentages.  相似文献   

20.
Abstract

In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号