首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This simulation study demonstrates how the choice of estimation method affects indexes of fit and parameter bias for different sample sizes when nested models vary in terms of specification error and the data demonstrate different levels of kurtosis. Using a fully crossed design, data were generated for 11 conditions of peakedness, 3 conditions of misspecification, and 5 different sample sizes. Three estimation methods (maximum likelihood [ML], generalized least squares [GLS], and weighted least squares [WLS]) were compared in terms of overall fit and the discrepancy between estimated parameter values and the true parameter values used to generate the data. Consistent with earlier findings, the results show that ML compared to GLS under conditions of misspecification provides more realistic indexes of overall fit and less biased parameter values for paths that overlap with the true model. However, despite recommendations found in the literature that WLS should be used when data are not normally distributed, we find that WLS under no conditions was preferable to the 2 other estimation procedures in terms of parameter bias and fit. In fact, only for large sample sizes (N = 1,000 and 2,000) and mildly misspecified models did WLS provide estimates and fit indexes close to the ones obtained for ML and GLS. For wrongly specified models WLS tended to give unreliable estimates and over-optimistic values of fit.  相似文献   

2.
A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. In the simulation design, (a) sample size, (b) the level of nonnormality characterizing the data, (c) the population values of the model parameters, and (d) the type of estimator were systematically varied. Estimates of model parameters were generally unaffected by either nonnormality or small sample size. Under severely nonnormal conditions, normal theory maximum likelihood estimates of the standard error of the mediated effect exhibited less bias (approximately 10% to 20% too small) compared to the standard errors of the structural regression coefficients (20% to 45% too small). Asymptotically distribution free standard errors of both the mediated effect and the structural parameters were substantially affected by sample size, but not nonnormality. Robust standard errors consistently yielded the most accurate estimates of sampling variability.  相似文献   

3.
Though the common default maximum likelihood estimator used in structural equation modeling is predicated on the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to utilize distribution-free estimation methods. Fortunately, promising alternatives are being integrated into popular software packages. Bootstrap resampling, which is offered in AMOS (Arbuckle, 1997), is one potential solution for estimating model test statistic p values and parameter standard errors under nonnormal data conditions. This study is an evaluation of the bootstrap method under varied conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Accuracy of the test statistic p values is evaluated in terms of model rejection rates, whereas accuracy of bootstrap standard error estimates takes the form of bias and variability of the standard error estimates themselves.  相似文献   

4.
The purpose of this study is to investigate the effects of missing data techniques in longitudinal studies under diverse conditions. A Monte Carlo simulation examined the performance of 3 missing data methods in latent growth modeling: listwise deletion (LD), maximum likelihood estimation using the expectation and maximization algorithm with a nonnormality correction (robust ML), and the pairwise asymptotically distribution-free method (pairwise ADF). The effects of 3 independent variables (sample size, missing data mechanism, and distribution shape) were investigated on convergence rate, parameter and standard error estimation, and model fit. The results favored robust ML over LD and pairwise ADF in almost all respects. The exceptions included convergence rates under the most severe nonnormality in the missing not at random (MNAR) condition and recovery of standard error estimates across sample sizes. The results also indicate that nonnormality, small sample size, MNAR, and multicollinearity might adversely affect convergence rate and the validity of statistical inferences concerning parameter estimates and model fit statistics.  相似文献   

5.
A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions.  相似文献   

6.
Appropriate model specification is fundamental to unbiased parameter estimates and accurate model interpretations in structural equation modeling. Thus detecting potential model misspecification has drawn the attention of many researchers. This simulation study evaluates the efficacy of the Bayesian approach (the posterior predictive checking, or PPC procedure) under multilevel bifactor model misspecification (i.e., ignoring a specific factor at the within level). The impact of model misspecification on structural coefficients was also examined in terms of bias and power. Results showed that the PPC procedure performed better in detecting multilevel bifactor model misspecification, when the misspecification became more severe and sample size was larger. Structural coefficients were increasingly negatively biased at the within level, as model misspecification became more severe. Model misspecification at the within level affected the between-level structural coefficient estimates more when data dependency was lower and the number of clusters was smaller. Implications for researchers are discussed.  相似文献   

7.
McDonald goodness‐of‐fit indices based on maximum likelihood, asymptotic distribution free, and the Satorra‐Bentler scale correction estimation methods are investigated. Sampling experiments are conducted to assess the magnitude of error for each index under variations in distributional misspecification, structural misspecification, and sample size. The Satorra‐Bentler correction‐based index is shown to have the least error under each distributional misspecification level when the model has correct structural specification. The scaled index also performs adequately when there is minor structural misspecification and distributional misspecification. However, when a model has major structural misspecification with distributional misspecification, none of the estimation methods perform adequately.  相似文献   

8.
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is to use polychoric correlations and fit the models using methods such as unweighted least squares (ULS), maximum likelihood (ML), weighted least squares (WLS), or diagonally weighted least squares (DWLS). In this simulation evaluation we study the behavior of these methods in combination with polychoric correlations when the models are misspecified. We also study the effect of model size and number of categories on the parameter estimates, their standard errors, and the common chi-square measures of fit when the models are both correct and misspecified. When used routinely, these methods give consistent parameter estimates but ULS, ML, and DWLS give incorrect standard errors. Correct standard errors can be obtained for these methods by robustification using an estimate of the asymptotic covariance matrix W of the polychoric correlations. When used in this way the methods are here called RULS, RML, and RDWLS.  相似文献   

9.
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth with respect to 3 factors: sample size (100, 200, and 500), 4 levels of magnitude of interaction effect, and 3 correlation values between intercept and covariate (.3, .5, and .7). Correctly specified models were examined to determine power and Type I error rates, and misspecified models were examined to evaluate the effects on power, parameter estimation, bias, and fit indexes. Results showed that, under correctly specified models, power increased as expected with increasing sample size, larger magnitude of interaction, and larger intercept-covariate correlation. Under misspecification, omitting a non-null interaction results in significant change in the estimation of the direct effects of both covariate and intercept in both magnitude and direction, with results dependent on sign of parameter values for main effects and interaction. Including a spurious interaction does not affect estimation of direct effects of intercept and covariate but does increase standard errors. The primary problem in ignoring a non-null interaction lies in misinterpretation of the model, as interactions yield important insights into the nature of the processes being studied.  相似文献   

10.
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact traditional marginal maximum likelihood (ML) estimation of IRT model parameters, including sample size, with smaller samples generally being associated with lower parameter estimation accuracy, and inflated standard errors for the estimates. Given this deleterious impact of small samples on IRT model performance, use of these techniques with low-incidence populations, where it might prove to be particularly useful, estimation becomes difficult, especially with more complex models. Recently, a Pairwise estimation method for Rasch model parameters has been suggested for use with missing data, and may also hold promise for parameter estimation with small samples. This simulation study compared item difficulty parameter estimation accuracy of ML with the Pairwise approach to ascertain the benefits of this latter method. The results support the use of the Pairwise method with small samples, particularly for obtaining item location estimates.  相似文献   

11.
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate, parameter estimate bias, MSE of parameter estimates, standard error coverage, model rejection rate, and model goodness of fit—RMSEA. A three-factor CFA model was used. Findings indicated that FIML outperformed the other methods in MCAR, and MI should be used to increase the plausibility of MAR. SRPI was not comparable to the other three methods in either MCAR or MAR.  相似文献   

12.
Research in covariance structure analysis suggests that nonnormal data will invalidate chi‐square tests and produce erroneous standard errors. However, much remains unknown about the extent to and the conditions under which highly skewed and kurtotic data can affect the parameter estimates, standard errors, and fit indices. Using actual kurtotic and skewed data and varying sample sizes and estimation methods, we found that (a) normal theory maximum likelihood (ML) and generalized least squares estimators were fairly consistent and almost identical, (b) standard errors tended to underestimate the true variation of the estimators, but the problem was not very serious for large samples (n = 1,000) and conservative (99%) confidence intervals, and (c) the adjusted chi‐square tests seemed to yield acceptable results with appropriate sample sizes.  相似文献   

13.
This study used Monte Carlo methods to investigate the accuracy and utility of estimators of overall error and error due to approximation in structural equation models. The effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter (McDonald & Marsh, 1990) was examined as a measure of approximation error, whereas the one‐ and two‐sample cross‐validation indices and a sample estimator of overall error (EFo) proposed by Browne and Cudeck (1989, 1993) were presented as measures of overall error. The rescaled noncentrality parameter and EFo provided extremely accurate estimates of the amounts of approximation and overall error, respectively. However, although models with errors of omission produced larger estimates of approximation and overall error, the presence of errors of inclusion had little or no effect on estimates of either type of error. The cross‐validation indices and sample estimator of overall error reached minimum values for the same model as an empirically derived measure of overall error only for models with large amounts of specification error. Implications for the use of these estimators in choosing among competing models were discussed.  相似文献   

14.
Data collected from questionnaires are often in ordinal scale. Unweighted least squares (ULS), diagonally weighted least squares (DWLS) and normal-theory maximum likelihood (ML) are commonly used methods to fit structural equation models. Consistency of these estimators demands no structural misspecification. In this article, we conduct a simulation study to compare the equation-by-equation polychoric instrumental variable (PIV) estimation with ULS, DWLS, and ML. Accuracy of PIV for the correctly specified model and robustness of PIV for misspecified models are investigated through a confirmatory factor analysis (CFA) model and a structural equation model with ordinal indicators. The effects of sample size and nonnormality of the underlying continuous variables are also examined. The simulation results show that PIV produces robust factor loading estimates in the CFA model and in structural equation models. PIV also produces robust path coefficient estimates in the model where valid instruments are used. However, robustness highly depends on the validity of instruments.  相似文献   

15.
This Monte Carlo simulation study compares methods to estimate the effects of programs with multiple versions when assignment of individuals to program version is not random. These methods use generalized propensity scores, which are predicted probabilities of receiving a particular level of the treatment conditional on covariates, to remove selection bias. The results indicate that inverse probability of treatment weighting (IPTW) removes the most bias, followed by optimal full matching (OFM), and marginal mean weighting through stratification (MMWTS). The study also compared standard error estimation with Taylor series linearization, bootstrapping and the jackknife across propensity score methods. With IPTW, these standard error estimation methods performed adequately, but standard errors estimates were biased in most conditions with OFM and MMWTS.  相似文献   

16.
This study compared diagonal weighted least squares robust estimation techniques available in 2 popular statistical programs: diagonal weighted least squares (DWLS; LISREL version 8.80) and weighted least squares–mean (WLSM) and weighted least squares—mean and variance adjusted (WLSMV; Mplus version 6.11). A 20-item confirmatory factor analysis was estimated using item-level ordered categorical data. Three different nonnormality conditions were applied to 2- to 7-category data with sample sizes of 200, 400, and 800. Convergence problems were seen with nonnormal data when DWLS was used with few categories. Both DWLS and WLSMV produced accurate parameter estimates; however, bias in standard errors of parameter estimates was extreme for select conditions when nonnormal data were present. The robust estimators generally reported acceptable model–data fit, unless few categories were used with nonnormal data at smaller sample sizes; WLSMV yielded better fit than WLSM for most indices.  相似文献   

17.
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no model misspecification. The most important results were that with 2 and 3 categories the rejection rates of the WLSMV chi-square test corresponded much more to the expected rejection rates according to an alpha level of. 05 than the rejection rates of the ML chi-square test. The magnitude of the loadings was more precisely estimated by means of WLSMV when the variables had only 2 or 3 categories. The sample size for WLSMV estimation needed not to be larger than the sample size for ML estimation.  相似文献   

18.
The present study evaluated the multiple imputation method, a procedure that is similar to the one suggested by Li and Lissitz (2004), and compared the performance of this method with that of the bootstrap method and the delta method in obtaining the standard errors for the estimates of the parameter scale transformation coefficients in item response theory (IRT) equating in the context of the common‐item nonequivalent groups design. Two different estimation procedures for the variance‐covariance matrix of the IRT item parameter estimates, which were used in both the delta method and the multiple imputation method, were considered: empirical cross‐product (XPD) and supplemented expectation maximization (SEM). The results of the analyses with simulated and real data indicate that the multiple imputation method generally produced very similar results to the bootstrap method and the delta method in most of the conditions. The differences between the estimated standard errors obtained by the methods using the XPD matrices and the SEM matrices were very small when the sample size was reasonably large. When the sample size was small, the methods using the XPD matrices appeared to yield slight upward bias for the standard errors of the IRT parameter scale transformation coefficients.  相似文献   

19.
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and platykurtic latent variable distributions, 3 methods were compared in Mplus: limited information, full information integrating over a normal distribution, and full information integrating over the known underlying distribution. Interfactor correlation estimates were similar for all 3 estimation methods. For the platykurtic distribution, estimation method made little difference for the item parameter estimates. When the latent variable was negatively skewed, for the most discriminating easy or difficult items, limited-information estimates of both parameters were considerably biased. Full-information estimates obtained by marginalizing over a normal distribution were somewhat biased. Full-information estimates obtained by integrating over the true latent distribution were essentially unbiased. For the a parameters, standard errors were larger for the limited-information estimates when the bias was positive but smaller when the bias was negative. For the d parameters, standard errors were larger for the limited-information estimates of the easiest, most discriminating items. Otherwise, they were generally similar for the limited- and full-information estimates. Sample size did not substantially impact the differences between the estimation methods; limited information did not gain an advantage for smaller samples.  相似文献   

20.
In the logistic regression (LR) procedure for differential item functioning (DIF), the parameters of LR have often been estimated using maximum likelihood (ML) estimation. However, ML estimation suffers from the finite-sample bias. Furthermore, ML estimation for LR can be substantially biased in the presence of rare event data. The bias of ML estimation due to small samples and rare event data can degrade the performance of the LR procedure, especially when testing the DIF of difficult items in small samples. Penalized ML (PML) estimation was originally developed to reduce the finite-sample bias of conventional ML estimation and also was known to reduce the bias in the estimation of LR for the rare events data. The goal of this study is to compare the performances of the LR procedures based on the ML and PML estimation in terms of the statistical power and Type I error. In a simulation study, Swaminathan and Rogers's Wald test based on PML estimation (PSR) showed the highest statistical power in most of the simulation conditions, and LRT based on conventional PML estimation (PLRT) showed the most robust and stable Type I error. The discussion about the trade-off between bias and variance is presented in the discussion section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号