首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many applications of multilevel modeling, group-level (L2) variables for assessing group-level effects are generated by aggregating variables from a lower level (L1). However, the observed group mean might not be a reliable measure of the unobserved true group mean. In this article, we propose a Bayesian approach for estimating a multilevel latent contextual model that corrects for measurement error and sampling error (i.e., sampling only a small number of L1 units from a L2 unit) when estimating group-level effects of aggregated L1 variables. Two simulation studies were conducted to compare the Bayesian approach with the maximum likelihood approach implemented in Mplus. The Bayesian approach showed fewer estimation problems (e.g., inadmissible solutions) and more accurate estimates of the group-level effect than the maximum likelihood approach under problematic conditions (i.e., small number of groups, predictor variable with a small intraclass correlation). An application from educational psychology is used to illustrate the different estimation approaches.  相似文献   

2.
Appropriate model specification is fundamental to unbiased parameter estimates and accurate model interpretations in structural equation modeling. Thus detecting potential model misspecification has drawn the attention of many researchers. This simulation study evaluates the efficacy of the Bayesian approach (the posterior predictive checking, or PPC procedure) under multilevel bifactor model misspecification (i.e., ignoring a specific factor at the within level). The impact of model misspecification on structural coefficients was also examined in terms of bias and power. Results showed that the PPC procedure performed better in detecting multilevel bifactor model misspecification, when the misspecification became more severe and sample size was larger. Structural coefficients were increasingly negatively biased at the within level, as model misspecification became more severe. Model misspecification at the within level affected the between-level structural coefficient estimates more when data dependency was lower and the number of clusters was smaller. Implications for researchers are discussed.  相似文献   

3.
Meta-analytic structural equation modeling (MASEM) refers to a set of meta-analysis techniques for combining and comparing structural equation modeling (SEM) results from multiple studies. Existing approaches to MASEM cannot appropriately model between-studies heterogeneity in structural parameters because of missing correlations, lack model fit assessment, and suffer from several theoretical limitations. In this study, we address the major shortcomings of existing approaches by proposing a novel Bayesian multilevel SEM approach. Simulation results showed that the proposed approach performed satisfactorily in terms of parameter estimation and model fit evaluation when the number of studies and the within-study sample size were sufficiently large and when correlations were missing completely at random. An empirical example about the structure of personality based on a subset of data was provided. Results favored the third factor structure over the hierarchical structure. We end the article with discussions and future directions.  相似文献   

4.
In this study, we contrast two competing approaches, not previously compared, that balance the rigor of CFA/SEM with the flexibility to fit realistically complex data. Exploratory SEM (ESEM) is claimed to provide an optimal compromise between EFA and CFA/SEM. Alternatively, a family of three Bayesian SEMs (BSEMs) replace fixed-zero estimates with informative, small-variance priors for different subsets of parameters: cross-loadings (CL), residual covariances (RC), or CLs and RCs (CLRC). In Study 1, using three simulation studies, results showed that (1) BSEM-CL performed more closely to ESEM; (2) BSEM-CLRC did not provide more accurate model estimation compared with BSEM-CL; (3) BSEM-RC provided unstable estimation; and (4) different specifications of targeted values in ESEM and informative priors in BSEM have significant impacts on model estimation. The real data analysis (Study 2) showed that the differences in estimation between different models were largely consistent with those in Study1 but somewhat smaller.  相似文献   

5.
We present a multigroup multilevel confirmatory factor analysis (CFA) model and a procedure for testing multilevel factorial invariance in n-level structural equation modeling (nSEM). Multigroup multilevel CFA introduces a complexity when the group membership at the lower level intersects the clustered structure, because the observations in different groups but in the same cluster are not independent of one another. nSEM provides a framework in which the multigroup multilevel data structure is represented with the dependency between groups at the lower level properly taken into account. The procedure for testing multilevel factorial invariance is illustrated with an empirical example using an R package xxm2.  相似文献   

6.
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes and illustrates key features of Bayesian approaches to model diagnostics and assessing data–model fit of structural equation models, discussing their merits relative to traditional procedures.  相似文献   

7.
Research in regularization, as applied to structural equation modeling (SEM), remains in its infancy. Specifically, very little work has compared regularization approaches across both frequentist and Bayesian estimation. The purpose of this study was to address just that, demonstrating both similarity and distinction across estimation frameworks, while specifically highlighting more recent developments in Bayesian regularization. This is accomplished through the use of two empirical examples that demonstrate both ridge and lasso approaches across both frequentist and Bayesian estimation, along with detail regarding software implementation. We conclude with a discussion of future research, advocating for increased evaluation and synthesis across both Bayesian and frequentist frameworks.  相似文献   

8.
This article examines Bayesian model averaging as a means of addressing predictive performance in Bayesian structural equation models. The current approach to addressing the problem of model uncertainty lies in the method of Bayesian model averaging. We expand the work of Madigan and his colleagues by considering a structural equation model as a special case of a directed acyclic graph. We then provide an algorithm that searches the model space for submodels and obtains a weighted average of the submodels using posterior model probabilities as weights. Our simulation study provides a frequentist evaluation of our Bayesian model averaging approach and indicates that when the true model is known, Bayesian model averaging does not yield necessarily better predictive performance compared to nonaveraged models. However, our case study using data from an international large-scale assessment reveals that the model-averaged submodels provide better posterior predictive performance compared to the initially specified model.  相似文献   

9.
Multilevel modeling is a statistical approach to analyze hierarchical data that consist of individual observations nested within clusters. Bayesian method is a well-known, sometimes better, alternative of Maximum likelihood method for fitting multilevel models. Lack of user friendly and computationally efficient software packages or programs was a main obstacle in applying Bayesian multilevel modeling. In recent years, the development of software packages for multilevel modeling with improved Bayesian algorithms and faster speed has been growing. This article aims to update the knowledge of software packages for Bayesian multilevel modeling and therefore to promote the use of these packages. Three categories of software packages capable of Bayesian multilevel modeling including brms, MCMCglmm, glmmBUGS, Bambi, R2BayesX, BayesReg, R2MLwiN and others are introduced and compared in terms of computational efficiency, modeling capability and flexibility, as well as user-friendliness. Recommendations to practical users and suggestions for future development are also discussed.  相似文献   

10.
Multilevel structural equation modeling (ML-SEM) for multilevel mediation is noted for its flexibility over a system of multilevel models (MLMs). Sample size requirements are an overlooked limitation of ML-SEM (100 clusters is recommended). We find that 89% of ML-SEM studies have fewer than 100 clusters and the median number is 44. Furthermore, 75% of ML-SEM studies implement 2–1–1 or 1–1–1 models, which can be equivalently fit with MLMs. MLMs theoretically have lower sample size requirements, although studies have yet to assess small sample performance for multilevel mediation. We conduct a simulation to address this pervasive problem. We find that MLMs have more desirable small sample performance and can be trustworthy with 10 clusters. Importantly, many studies lack the sample size and model complexity to necessitate ML-SEM. Although ML-SEM is undeniably more flexible and uniquely positioned for difficult problems, small samples often can be more effectively and simply addressed with MLMs.  相似文献   

11.
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects modeling (LMM) such as cross-sectional multilevel modeling and latent growth modeling. It is well known that LMM can be formulated as structural equation models. However, one main difference between the implementations in SEM and LMM is that maximum likelihood (ML) estimation is usually used in SEM, whereas restricted (or residual) maximum likelihood (REML) estimation is the default method in most LMM packages. This article shows how REML estimation can be implemented in SEM. Two empirical examples on latent growth model and meta-analysis are used to illustrate the procedures implemented in OpenMx. Issues related to implementing REML in SEM are discussed.  相似文献   

12.
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain underutilized. This is largely due to the lack of recommendations for their use. To address this problem, PPP and DIC were evaluated in a series of Monte Carlo simulation studies. The results show that both PPP and DIC are influenced by severity of model misspecification, sample size, model size, and choice of prior. The cutoffs PPP < 0.10 and ?DIC > 7 work best in the conditions and models tested here to maintain low false detection rates and misspecified model selection rates, respectively. The recommendations provided in this study will help researchers evaluate their models in a Bayesian SEM analysis and set the stage for future development and evaluation of Bayesian SEM fit indices.  相似文献   

13.
Abstract

Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum likelihood (REML) techniques, but Bayesian approaches have also been suggested. The purpose of this Monte Carlo simulation study was to examine the impact of estimation method (REML versus Bayesian with noninformative priors) on the estimation of treatment effects (relative bias, root mean square error) and on the inferences about those effects (interval coverage) for autocorrelated multiple-baseline data. Simulated conditions varied with regard to the number of participants, series length, and distribution of the variance within and across participants. REML and Bayesian estimation led to estimates of the fixed effects that showed little to no bias but that differentially impacted the inferences about the fixed effects and the estimates of the variances. Implications for applied researchers and methodologists are discussed.  相似文献   

14.
Measuring academic growth, or change in aptitude, relies on longitudinal data collected across multiple measurements. The National Educational Longitudinal Study (NELS:88) is among the earliest, large-scale, educational surveys tracking students’ performance on cognitive batteries over 3 years. Notable features of the NELS:88 data set, and of almost all repeated measures educational assessments, are (a) the outcome variables are binary or at least categorical in nature; and (b) a set of different items is given at each measurement occasion with a few anchor items to fix the measurement scale. This study focuses on the challenges related to specifying and fitting a second-order longitudinal model for binary outcomes, within both the item response theory and structural equation modeling frameworks. The distinctions between and commonalities shared between these two frameworks are discussed. A real data analysis using the NELS:88 data set is presented for illustration purposes.  相似文献   

15.
Structural equation modeling (SEM) is a versatile statistical modeling tool. Its estimation techniques, modeling capacities, and breadth of applications are expanding rapidly. This module introduces some common terminologies. General steps of SEM are discussed along with important considerations in each step. Simple examples are provided to illustrate some of the ideas for beginners. In addition, several popular specialized SEM software programs are briefly discussed with regard to their features and availability. The intent of this module is to focus on foundational issues to inform readers of the potentials as well as the limitations of SEM. Interested readers are encouraged to consult additional references for advanced model types and more application examples.  相似文献   

16.
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's advantages relative to MLM approaches for multilevel mediation analysis has been provided. Nor has it been demonstrated that MSEM performs adequately for mediation analysis in an absolute sense. This study addresses these gaps and finds that the MSEM method outperforms 2 MLM-based techniques in 2-level models in terms of bias and confidence interval coverage while displaying adequate efficiency, convergence rates, and power under a variety of conditions. Simulation results support prior theoretical work regarding the advantages of MSEM over MLM for mediation in clustered data.  相似文献   

17.
A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM’s utility.  相似文献   

18.
This article introduces and demonstrates the application of an R statistical programming environment code for conducting structural equation modeling (SEM) specification searches. The implementation and flexibility of the provided code is demonstrated using the Tabu search procedure, although the underlying code can also be directly modified to implement other search procedures like Ant Colony Optimization, Genetic Algorithms, Ruin-and-Recreate, or Simulated Annealing. The application is illustrated using data with a known common factor structure. The results demonstrate the capabilities of the program for conducting specification searches in SEM. The programming codes are provided as open-source R functions.  相似文献   

19.
A structural equation modeling method for examining time-invariance of variable specificity in longitudinal studies with multiple measures is outlined, which is developed within a confirmatory factor-analytic framework. The approach represents a likelihood ratio test for the hypothesis of stability in the specificity part of the residual term associated with repeated administration of each measure. The procedure can be used in the search for parsimonious versions of multiwave multiple-indicator models, to test for variable specificity in them, and to examine assumptions underlying particular parameter estimation procedures in repeated measure designs. The outlined method is illustrated with empirical data.  相似文献   

20.
Although methodology articles have increasingly emphasized the need to analyze data from two members of a dyad simultaneously, the most popular method in substantive applications is to examine dyad members separately. This might be due to the underappreciation of the extra information simultaneous modeling strategies can provide. Therefore, the goal of this study was to compare multiple growth curve modeling approaches for longitudinal dyadic data (LDD) in both structural equation modeling and multilevel modeling frameworks. Models separately assessing change over time for distinguishable dyad members are compared to simultaneous models fitted to LDD from both dyad members. Furthermore, we compared the simultaneous default versus dependent approaches (whether dyad pairs’ Level 1 [or unique] residuals are allowed to covary and differ in variance). Results indicated that estimates of variance and covariance components led to conflicting results. We recommend the simultaneous dependent approach for inferring differences in change over time within a dyad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号