共查询到20条相似文献,搜索用时 15 毫秒
1.
A Second-Order Conditionally Linear Mixed Effects Model With Observed and Latent Variable Covariates
Jeffrey R. Harring Nidhi Kohli Rebecca D. Silverman Deborah L. Speece 《Structural equation modeling》2013,20(1):118-136
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a nonlinear manner are common to all subjects. In this article we describe how a variant of the Michaelis–Menten (M–M) function can be fit within this modeling framework using Mplus 6.0. We demonstrate how observed and latent covariates can be incorporated to help explain individual differences in growth characteristics. Features of the model including an explication of key analytic decision points are illustrated using longitudinal reading data. To aid in making this class of models accessible, annotated Mplus code is provided. 相似文献
2.
Nonlinear models are effective tools for the analysis of longitudinal data. These models provide a flexible means for describing data that follow complex forms of change. Exponential and logistic functions that include a parameter to represent an asymptote, for instance, are useful for describing responses that tend to level off with time. There are forms of nonlinear latent curve models and nonlinear mixed-effects model that are equivalent, and so given the same set of data, growth function, distributional assumptions, and method of estimation, the 2 models yield equivalent results. There are also forms that are strikingly different and can yield different interpretations for a given set of data. This article discusses cases in which nonlinear mixed-effects models and nonlinear latent curve models are equivalent and those in which they are different and clarifies the estimation needs of the different models. Examples based on empirical data help to illustrate these points. 相似文献
3.
Katerina M. Marcoulides 《Structural equation modeling》2018,25(5):687-699
Latent growth curve models are widely used in the social and behavioral sciences to study complex developmental patterns of change over time. The trajectories of these developmental patterns frequently exhibit distinct segments in the studied variables. Latent growth models with piecewise functions for repeated measurements of variables have become increasingly popular for modeling such developmental trajectories. A major problem with using piecewise models is determining the precise location of the point where the change in the process has occurred and uncovering the related number of segments. The purpose of this paper is to introduce an optimization procedure that can be used to determine both the segments and location of the knots in piecewise linear latent growth models. The procedure is illustrated using empirical data in order to detect the number of segments and change points. The results demonstrate the capabilities of the procedure for fitting latent growth curve models. 相似文献
4.
Tae Kyoung Lee Kandauda Wickrama Catherine W. O’Neal 《Structural equation modeling》2018,25(2):294-306
Latent growth modeling allows social behavioral researchers to investigate within-person change and between-person differences in within-person change. Typically, conventional latent growth curve models are applied to continuous variables, where the residuals are assumed to be normally distributed, whereas categorical variables (i.e., binary and ordinal variables), which do not hold to normal distribution assumptions, have rarely been used. This article describes the latent growth curve model with categorical variables, and illustrates applications using Mplus software that are applicable to social behavioral research. The illustrations use marital instability data from the Iowa Youth and Family Project. We close with recommendations for the specification and parameterization of growth models that use both logit and probit link functions. 相似文献
5.
Todd E. Bodner 《Structural equation modeling》2013,20(4):651-675
When using multiple imputation in the analysis of incomplete data, a prominent guideline suggests that more than 10 imputed data values are seldom needed. This article calls into question the optimism of this guideline and illustrates that important quantities (e.g., p values, confidence interval half-widths, and estimated fractions of missing information) suffer from substantial imprecision with a small number of imputations. Substantively, a researcher can draw categorically different conclusions about null hypothesis rejection, estimation precision, and missing information in distinct multiple imputation runs for the same data and analysis with few imputations. This article explores the factors associated with this imprecision, demonstrates that precision improves by increasing the number of imputations, and provides practical guidelines for choosing a reasonable number of imputations to reduce imprecision for each of these quantities. 相似文献
6.
The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) × 3 (exogenous latent mean difference) × 3 (endogenous latent mean difference) × 3 (correlation between factors) × 3 (mixture proportions) factorial design. In addition, the efficacy of several likelihood-based statistics (Akaike's Information Criterion [AIC], Bayesian Information Ctriterion [BIC], the sample-size adjusted BIC [ssBIC], the consistent AIC [CAIC], the Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test [aVLMR]), classification-based statistics (CLC [classification likelihood information criterion], ICL-BIC [integrated classification likelihood], normalized entropy criterion [NEC], entropy), and distributional statistics (multivariate skew and kurtosis test) were examined to determine which statistics best recover the correct number of components. Results indicate that the structural parameters were recovered, but the model fit statistics were not exceedingly accurate. The ssBIC statistic was the most accurate statistic, and the CLC, ICL-BIC, and aVLMR showed limited utility. However, none of these statistics were accurate for small samples (n = 500). 相似文献
7.
Minjung Kim Oi-Man Kwok Myeongsun Yoon Victor Willson Mark H. C. Lai 《Journal of Experimental Education》2016,84(2):307-329
This study investigated the optimal strategy for model specification search under the latent growth modeling (LGM) framework, specifically on searching for the correct polynomial mean or average growth model when there is no a priori hypothesized model in the absence of theory. In this simulation study, the effectiveness of different starting models on the search of the true mean growth model was investigated in terms of the mean and within-subject variance-covariance (V-C) structure model. The results showed that specifying the most complex (i.e., unstructured) within-subject V-C structure with the use of LRT, ΔAIC, and ΔBIC achieved the highest recovery rate (>85%) of the true mean trajectory. Implications of the findings and limitations are discussed. 相似文献
8.
Growth mixture models combine latent growth curve models and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. Analyses based on these models are becoming quite common in social and behavioral science research because of recent advances in computing, the availability of specialized statistical programs, and the ease of programming. In this article, we show how mixture models can be fit to examine the presence of multiple latent classes by algorithmically grouping or clustering individuals who follow the same estimated growth trajectory based on an evaluation of individual case residuals. The approach is illustrated using empirical longitudinal data along with an easy to use computerized implementation. 相似文献
9.
Steffen Nestler 《Structural equation modeling》2013,20(3):461-473
This article applies Bollen’s (1996) 2-stage least squares/instrumental variables (2SLS/IV) approach for estimating the parameters in an unconditional and a conditional second-order latent growth model (LGM). First, the 2SLS/IV approach for the estimation of the means and the path coefficients in a second-order LGM is derived. An empirical example is then used to show that 2SLS/IV yields estimates that are similar to maximum likelihood (ML) in the estimation of a conditional second-order LGM. Three subsequent simulation studies are then presented to show that the new approach is as accurate as ML and that it is more robust against misspecifications of the growth trajectory than ML. Together, these results suggest that 2SLS/IV should be considered as an alternative to the commonly applied ML estimator. 相似文献
10.
11.
Steffen Nestler 《Structural equation modeling》2013,20(4):542-551
The relations between the latent variables in structural equation models are typically assumed to be linear in form. This article aims to explain how a specification error test using instrumental variables (IVs) can be employed to detect unmodeled interactions between latent variables or quadratic effects of latent variables. An empirical example is presented, and the results of a simulation study are reported to evaluate the sensitivity and specificity of the test and compare it with the commonly employed chi-square model test. The results show that the proposed test can identify most unmodeled latent interactions or latent quadratic effects in moderate to large samples. Furthermore, its power is higher when the number of indicators used to define the latent variables is large. Altogether, this article shows how the IV-based test can be applied to structural equation models and that it is a valuable tool for researchers using structural equation models. 相似文献
12.
First-order latent growth curve models (FGMs) estimate change based on a single observed variable and are widely used in longitudinal research. Despite significant advantages, second-order latent growth curve models (SGMs), which use multiple indicators, are rarely used in practice, and not all aspects of these models are widely understood. In this article, our goal is to contribute to a better understanding of theoretical and practical differences between FGMs and SGMs. We define the latent variables in FGMs and SGMs explicitly on the basis of latent state–trait (LST) theory and discuss insights that arise from this approach. We show that FGMs imply a strict trait-like conception of the construct under study, whereas SGMs allow for both trait and state components. Based on a simulation study and empirical applications to the Center for Epidemiological Studies Depression Scale (Radloff, 1977) we illustrate that, as an important practical consequence, FGMs yield biased reliability estimates whenever constructs contain state components, whereas reliability estimates based on SGMs were found to be accurate. Implications of the state–trait distinction for the measurement of change via latent growth curve models are discussed. 相似文献
13.
Hefei Liu 《Structural equation modeling》2018,25(1):41-55
Multivariate heterogenous data with latent variables are common in many fields such as biological, medical, behavioral, and social-psychological sciences. Mixture structural equation models are multivariate techniques used to examine heterogeneous interrelationships among latent variables. In the analysis of mixture models, determination of the number of mixture components is always an important and challenging issue. This article aims to develop a full Bayesian approach with the use of reversible jump Markov chain Monte Carlo method to analyze mixture structural equation models with an unknown number of components. The proposed procedure can simultaneously and efficiently select the number of mixture components and conduct parameter estimation. Simulation studies show the satisfactory empirical performance of the method. The proposed method is applied to study risk factors of osteoporotic fractures in older people. 相似文献
14.
In this article we describe a structural equation modeling (SEM) framework that allows nonnormal skewed distributions for the continuous observed and latent variables. This framework is based on the multivariate restricted skew t distribution. We demonstrate the advantages of skewed SEM over standard SEM modeling and challenge the notion that structural equation models should be based only on sample means and covariances. The skewed continuous distributions are also very useful in finite mixture modeling as they prevent the formation of spurious classes formed purely to compensate for deviations in the distributions from the standard bell curve distribution. This framework is implemented in Mplus Version 7.2. 相似文献
15.
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we describe a nonlinear structural equation mixture approach that integrates the strength of parametric approaches (specification of the nonlinear functional relationship) and the flexibility of semiparametric structural equation mixture approaches for approximating the nonnormality of latent predictor variables. In a comparative simulation study, the advantages of the proposed mixture procedure over contemporary approaches [Latent Moderated Structural Equations approach (LMS) and the extended unconstrained approach] are shown for varying degrees of skewness of the latent predictor variables. Whereas the conventional approaches show either biased parameter estimates or standard errors of the nonlinear effects, the proposed mixture approach provides unbiased estimates and standard errors. We present an empirical example from educational research. Guidelines for applications of the approaches and limitations are discussed. 相似文献
16.
When conducting longitudinal research, the investigation of between-individual differences in patterns of within-individual change can provide important insights. In this article, we use simulation methods to investigate the performance of a model-based exploratory data mining technique—structural equation model trees (SEM trees; Brandmaier, Oertzen, McArdle, & Lindenberger, 2013)—as a tool for detecting population heterogeneity. We use a latent-change score model as a data generation model and manipulate the precision of the information provided by a covariate about the true latent profile as well as other factors, including sample size, under the possible influences of model misspecifications. Simulation results show that, compared with latent growth curve mixture models, SEM trees might be very sensitive to model misspecification in estimating the number of classes. This can be attributed to the lower statistical power in identifying classes, resulting from smaller differences of parameters prescribed by the template model between classes. 相似文献
17.
This article shows that the mean and covariance structure of the predetermined autoregressive latent trajectory (ALT) model are very flexible. As a result, the shape of the modeled growth curve can be quite different from what one might expect at first glance. This is illustrated with several numerical examples that show that, for example, a linear trajectory might be present among the model predicted scores even though no latent change parameter was included in the model. In addition, 2 examples are given that show that the predetermined ALT model can fit to data generated by models with model structures that are rather different from that of the ALT model itself. The practical relevance of these findings is demonstrated using an empirical example. We end by providing recommendations for researchers considering the use of the predetermined ALT model. 相似文献
18.
The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the higher-level predictor was not included and that standard errors of the regression coefficients from the higher-level were underestimated when a regular LGCM was used. Nevertheless, random effect estimates, regression coefficients, and standard error estimates were consistent with those from the true MLGCM when the design-based LGCM included the higher-level predictor. They discussed implication for the study with empirical data illustration. 相似文献
19.
In recent years, longitudinal data have become increasingly relevant in many applications, heightening interest in selecting the best longitudinal model to analyze them. Too often, traditional practice rather than substantive theory guides the specific model selected. This opens the possibility that alternative models might better correspond to the data. In this paper, we present a general longitudinal model that we call the Latent Variable-Autoregressive Latent Trajectory (LV-ALT) model that includes most other longitudinal models with continuous outcomes as special cases. It is capable of specializing to most models dictated by theory or prior research while having the capacity to compare them to alternative ones. If there is little guidance on the best model, the LV-ALT provides a way to determine the appropriate empirical match to the data. We present the model, discuss its identification and estimation, and illustrate how the LV-ALT reveals new things about a widely used empirical example. 相似文献
20.
Researchers use latent class growth (LCG) analysis to detect meaningful subpopulations that display different growth curves. However, especially when the number of classes required to obtain a good fit is large, interpretation of the encountered class-specific curves might not be straightforward. To overcome this problem, we propose an alternative way of performing LCG analysis, which we call LCG tree (LCGT) modeling. For this purpose, a recursive partitioning procedure similar to divisive hierarchical cluster analysis is used: Classes are split until a certain criterion indicates that the fit does not improve. The advantage of the LCGT approach compared to the standard LCG approach is that it gives a clear insight into how the latent classes are formed and how solutions with different numbers of classes relate. The practical use of the approach is illustrated using applications on drug use during adolescence and mood regulation during the day. 相似文献