首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
20 0 1年全国高中数学竞赛第一试第 11题为 :函数 y =x + x2 - 3 x+ 2的值域为.下面提供五种解法 ,以飨读者 .解法 1 移项得 y- x=x2 - 3 x+ 2 ,上式等价于 (y- x) 2 =x2 - 3 x+ 2 ,y- x≥ 0 .12由 1得 x=y2 - 22 y- 3 ,代入 2得 y- y2 - 22 y- 3≥ 0 ,即 (y- 1) (y- 2 )2 y- 3 ≥ 0 ,解得 1≤ y<32 或y≥ 2 .故原函数的值域为 [1,32 )∪ [2 ,+∞ ) .解法 2 原函数式可变形为 y=x+(x- 32 ) 2 - 14,∵ x2 - 3 x+ 2≥ 0 ,∴ x≤ 1或 x≥ 2 .令 t=x- 32 ,则 t≤ - 12 或 t≥ 12 ,y=t+ 32 + t2 - 14.当 t≥ 12 时 ,y是 t的增函数 ,当 t=12时 ,…  相似文献   

2.
对于形如y=(a1x2 b1x c1)/(a2x2 b2x c2)(a1,a2不同时为0)的函数,常常用根的判别式法求其值域。这是利用方程思想、等价转化思想将所给函数转化为关于x的一元二次方程,通过方程有根,判别式Δ≥0,从而求得原函数值域。根据函数定义域的不同,一般可分为2种类型。一、函数定义域为实数集R例1:求函数y=2xx22 24xx -37的值域解:∵分母x2 2x 3=(x 1)2 2≥2∴函数定义域为R将原函数变形为(2-y)x2 (4-2y)x 7-3y=0(1)当y=2时,方程(1)无解。当y≠2时,(在用判别式前要检查方程二次项系数),由于x∈R∴方程(1)有实数解。∴Δ=(4-2y)2-4(2-y)(7-3y)≥0…  相似文献   

3.
本刊1985年第1期《论函数y=(ax~2 bx c)/(mx~2 nx l)(m≠0)值域的求法》中的方法可以推广,今用该法求函数y=(a_1f~2(x) b_1f(x) c_1)/(f_2f~2(x) b_2f(x)) c_2)的值域。一、如果f(x)的函数值可取一切实数。令u=f(x),转化为该文讨论的函数。 [例1] 求函数y=(sin~2x-2sinxcosx 3cos~2x)/(sin~2x 2sinxcosx-3cos~2x)的值域解:1°当cosx=0时,y=1。 2°当cosx≠0时,该函数可化为 y=(tg~2x-2tgx 3)/(tg~2x 2tgx-3) 因为tgx可取一切实数值,且该函数的分子分母无公因式,于是 (1-y)tg~2x-2(1 y)tgx 3(1 y)=0 则Δ=[-2(1 y)]~2-4×3(1 y)(1-y)≥0 2y~2 y-1≥0  相似文献   

4.
正余弦函数的有界性是指当 x∈ R时 ,有 |sinx|≤ 1 ,|cosx|≤ 1 .在解一类与正、余弦函数有关的题目中 ,其能注意到其有界这一性质 ,可使问题得以顺利解决 .下面通过一些例子说明这一性质的应用 .  1 求函数的值域或最大、最小值例 1 .求函数 y =( 2 cosx -1 ) / ( cosx 2 )的最大值及最小值 .解 :由 y =( 2 cosx -1 ) / ( cosx 2 )得 cosx =( 1 2 y) / ( 2 -y) .因为 |cosx|≤ 1 ,故 |( 1 2 y) / ( 2 -y) |≤ 1 .又因 3y2 8y -3≤ 0 ,则 -3≤ y≤ 1 / 3.从而函数的最大值为 1 / 3,最小值为 -3.例 2 .求函数 y =( 3 2 cosx sinx)…  相似文献   

5.
反函数是中学数学的一个难点,在高考中几乎年年出现,虽说其解题步骤简单:1.把函数看作方程,解出x;2.对调x、y;3.原函数的定义域、值域是反函数的值域、定义域.然而在实际解题过程中,经常出现以下误区.误区1:求反函数时忽略原函数的定义域.例1:求函数y=x2+4x+3(x≤-2)的反函数.错解:由已知x2+4x+(3-y)=0,得x=-2±"1+y.∴所得反函数为y=-2±"1+x(x≥-1).剖析:上述解法忽视了原函数的定义域(-∞、-2],故在求得反函数时,应舍去y=-2+"1+x.误区2:求反函数时,忽略原函数的值域.例2:求函数y="x2-2x+4(x≤0)的反函数.错解:因为y2=x2-2x+4,y2-3=(x-1)2…  相似文献   

6.
一策——直接法有的函数的结构并不复杂,可以通过基本函数的值域及不等式性质直接观察出函数的值域.【例1】求函数y=x21 2的值域.解:∵x2≥0∴x2 2≥2∴0相似文献   

7.
用直线系或曲线系探求函数值域,构思新颖,能够化繁为简,直观模型清晰,适用范围广泛。下面举例并加以说明。例1 求函数y=(2x~2+3x+3)/(x~2+x+1)(x≥-3/2)的值域。解法1:将函数式变形为  相似文献   

8.
反函数是中学数学教材中的难点之一,在教学中我们常会遇到对反函数定义理解不深不透、解题思路不清、解答步骤不全等错误,严重影响学生对这部分知识的掌握.下面本人将以函数中常见的几种典型错误进行剖析,与同行磋商.误区一:忽视函数存在反函数的条件案例1函数y=x2(x∈R)是否存在反函数,若存在,求反函数;若不存在,说明理由.错解函数存在反函数.当x≥0时,由y=x2得x=y,所以x≥0时,反函数为y=x(x≥0);当x<0时,由y=x2得x=-y,所以x<0时,反函数为y=-x(x>0).剖析忽视函数存在反函数的条件,从而盲目地进行分类讨论求反函数.正解∵y=x2(x∈R)不是一一对应函数,∴y=x2不存在反函数.解后反思只有从定义域到值域上的一一映射所确定的函数才有反函数.误区二:错解反函数的解析式案例2求函数y=3x2-1(x≤0)的反函数的表达式.错解由y=3x2-1,得x2=(y+1)3,∴x=(y+1)3或x=-(y+1)3,∴反函数的表达式为y=(x+1)3或y=-(x+1)3.剖析在求解过程中没有考虑原函数中x≤0这个条件导致出现两个答案的错误.正解由y=3x2-1,得x2=(y+1)3,∵x≤0,∴x...  相似文献   

9.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

10.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

11.
研究函数,常要求函数值域。本文介绍一些无理函数值域求法。 1.y=(ax b)~(1/2)(a≠0)型分析 这种类型的无理函数是最基本的。从观察不难看出值域为{y|y≥0且y∈R}. 2.y=px q±(ax b)~(1/2)型 例1 求y=x 4 (2x 4)~(1/2)的值域。 解令t=(2x 4)~(1/2)(t≥0)则x=(t~2-4)/2(t≥0). ∴原函数为y=(t~2-4)/(2) 4 t=((t 1)~(2) 3)/2 (t≥0), ∴y≥2,原函数值域为{y|y≥2且y∈R}.  相似文献   

12.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

13.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

14.
学生经常产生一些似是而非的错误,如: 例1 求函数y=x (x~2-3x 2)~(1/2)的值域。 错解 由y-x=x~2-3x 2)~(1/2) 可得 (y-x)~2=x~2-3x 2. 整理得 x=(2-y~2)/(3-2y)(y≠3/2). 因而函数的值域为{y|y∈R,y≠3/2}.  相似文献   

15.
函数不仅是高中数学的核心,而且是学习高等数学的基础.函数的定义域则是研究函数的基础,是考核数学素质的主要阵地.【例1】函数f(2x-1)的定义域是[0,1],求f(1-3x)的定义域.解:f(2x-1)的定义域是[0,1],即0≤x≤1,于是-1≤2x-1≤1,所以函数f(t)的定义域是[-1,1]令-1≤1-3x≤1,得0≤x≤23即f(1-3x)的定义域是[0,23]点评:函数f(2x-1)的定义域是指x的取值范围,而非(2x-1)的值域【例2】求函数f(x)=2-x 3x 1的定义域.解:由2-x 3x 1≥0x-1x 1≥0x<-1或x≥1∴f(x)的定义域为(-∞,-1)∪[1, ∞)【例3】已知y=f(x)的定义域为[0,1],求y=f(lnx)的定义域.解…  相似文献   

16.
一、比较大小例1若logx23-logx53≥log-y23-log-y53,则A.x-y≥0B.x+y≥0C.x-y≤0D.x+y≤0分析根据所给不等式的结构特征,可考虑构造函数f(t)=logt23-logt53,利用函数的单调性即可确定x与y之间的关系.解令f(t)=logt23-logt53,则易证f(t)在(-∞,+∞)上是增函数,由题设条件得f(x)≥f(-y).根据函数f(t)的单调性,得x≥-y,即x+y≥0.选B.二、求值例2已知x,y是实数,而且满足下列方程组(x-1)3+1997(x-1)=-1,(y-1)3+1997(y-1)=1 则x+y=_____.分析要直接解出x,y显然不大可能,因此必须考虑建立x,y之间的联系.解原方程组可化为(x-1)3+1997(x-1)=-1,(1…  相似文献   

17.
问题不等式21≤ax2x+23+x1+b≤121对一切x∈R恒成立,求a、b的值.这是许多数学资料都选为范例或典型练习的一道题,主要解法如下:设y=f(x)=ax2+3x+bx2+1,则21≤y≤121,即函数y=f(x)的值域是[21,121].将y=f(x)变形整理得:(y-a)x2-3x+(y-b)=0,由于原不等式对任意x∈R恒成立,则这个关于x的方程必有实根,Δ≥0,即9-4(y-a)(y-b)≥0,亦即4y2-4(a+b)y+(4ab-9)≤0(※),这个不等式的解为:12≤y≤121,则y1=21,y2=121是方程(※)的两个根,则由韦达定理,得a+b=64ab-94=141ba==15,或ba==15.,这个解法是错误的,举一个反例:取a=b=3,则y=f(x)=3x2x+23+x1+3=3+3…  相似文献   

18.
三角代换法是代数式化简、变形和求值中常用的方法之一 .在使用此方法求函数的值域或最值时 ,容易出现错误 .请先看全国著名一线教师编著的《中学数理化一题多解系列丛书——高中数学卷》(东北师范大学出版社出版 )上一个题目及其解答 :求函数 y =x 1 - x2的最大、最小值 .解 :解法 1 :把函数变形为 y - x =1 - x2 1即 (y - x) 2 =1 - x2 22 x2 - 2 yx y2 - 1 =0 ,方程有实根Δ =4 y2 - 8(y2 - 1 ) =8- 4y2≥ 0y2≤ 2 ,所以 - 2≤ y≤ 2函数的最大值为 ymax =2 ,最小值 ymin =- 2 .解法 2 :设 x =sinθ (- π2 ≤θ≤ π2 ) ,则y =sinθ…  相似文献   

19.
判别式是在研究二次函数中常常要用到的一个解题工具 .由于在具体使用时考虑不周等原因 ,常常产生解集改变的现象 ,惹出了一些是非祸端 .下面分析几例 .例 1 求函数 y =x -1-2x的值域 .错解 移项 ,两边平方 ,化简为关于x的一元二次方程 ,得x2 +2 ( 1-y)x +y2 -1=0 . ①因方程①恒有实数根 ,所以判别式Δ =[2 ( 1-y) ] 2 -4 ( y2 -1) ≥ 0 ,解得 y≤ 1.故 y∈ ( -∞ ,1] .分析 首先考查 y =1时 ,对应的自变量x值是否存在 ,这时由①得x=0 ,这就是说函数y=x -1-2x中 ,当自变量x =0时 ,对应的函数值y应为 1,然而事实上 ,当x=0时 ,y =-1,而非 …  相似文献   

20.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号