首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
同学们已学习过一元二次方程的两种解法:公式法和因式分解法,这里再介绍一元二次方程的另一种解法——均值换元法.先看下面的例子例1 解方程3x~2+5(2x+1)=0. 解去括号,得3x~2+10x+5=0. 二次项系数化为1,得x~2+10/3x+5/3=0. 由根与系数的关系,可设原方程的两根分别为-5/3+k、-5/3-k(k≥0),  相似文献   

2.
利用一元二次方程的求根公式,可以证明:方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0两根的a倍(a≠0)。运用这个结论,可以很快解决求作一个一元二次方程且使它的根分别是已知方程的各根的几倍问题。例1求作一个一元二次方程,使它的两根分别是方程3x~2-16x+5=0的两根的3倍。解:因为方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0的两根的a倍,所以,所求作的一元二次方程是x~2-16x+3×5=0,即x~2-16x+15=0.如果已知方程的二次项系数刚好等于所求方程的的根是已知方程各根的倍数,那么,就用已知方程二次项系数移乘常数项,二次项系数改为1,一次项不  相似文献   

3.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

4.
1.为什么要规定一元二次方程ax~2+bx+c=0中a≠0? 答当a=0时,方程变成了bx+c=0,这就不是一元二次方程了. 2.关于x的方程x~2(x+3)+2y-8x=x~3+2y-9(*)是一元二次方程吗?  相似文献   

5.
设一元二次方程x~2+px+q=0的两个根为x_1和x_2,则由根与系数的关系,x_1+x_2=-p,x_1x_2=q;反过来,以x_1,x_2为根的一元二次方程是x~2-(x_1+x_2)x+x_1x_2=0。下面谈谈这一原理在解方程或方程组中的应用。例1 解方程2(x~2+1)/(x+1)+6(x+1)/(x~2+1)=7。  相似文献   

6.
本试卷检测范围:初中代数第十二章一元二次方程第一节一元二次方程至第八节无理方程。 一、填空题(每空2分,共24分)1.方程6x~2=3-7x的二次项系数、一次项系数和常数项分别是____。2.用直接开平方法解方程9x~2-4=0的根是___;(x 1)~2=2的根是_____。3.若代数式(x 1)(3x-2)的值是零,则x等于___。4.当k___时,方程kx~2 2x 3=0有两个相等的实数根。  相似文献   

7.
A卷每题5分满分100分时间40分钟1.若方程m扩+4二十3一。有一个根是1,那么阴一2.一元二次方程(3x十1)’一4一O的根是3.已知一元二次方程护十Zx一1一O,它的根的判别式△~ ,根的情况是4.若。,口是一元二次方程*一3x一5一。的两个实数根,则生十粤 “尸5.方程x(x+1)~2的根是6.一元二次方程a护+bx+c一O有一个根是零的条件是((A)bZ一4ac=0(B)b=0(C)c二0(D)c共07.方程xZ一4x+2的根是( (A)x-一2 8.用换元法解方程于t的方程是(B)x--井一)2J丁—1了(C)x~士2(D)x=了3-2三J一+12=0,设t-王杏I,则关 ,.解方程、任丁不万~一x的结果是 10,关于x的一元…  相似文献   

8.
如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1和x2,那么x1+x2=-a/b,x1x2=c/a,这就是著名的韦达定理.韦达定理的常规证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.本文不借助于一元二次方程的求根公式给出韦达定理的几个新颖别致的证法,供大家参考.  相似文献   

9.
如果一元二次方程ax2 +bx +c =0有两个实数根x1、x2,那么x1+x2=-b/a,x1x2=c/a,这就是一元二次方程根与系数的关系.这两个关系式的应用十分广泛.  相似文献   

10.
在一元二次方程ax2 +bx +c =0(a≠0)中,若两根为x1、x2,则x1+x2=-b/4,x1·x2=c/a,根与系数的这种关系又称为韦达定理.它的逆定理同样成立,即当x1+x2=b/a,x1·x2=c/a时,那么x1、x2是ax2 +bx +c=0(a≠0)的两根. 一元二次方程的根与系数的关系,综合性强,应用极为广泛. 一、确定符合条件的方程 例1 (2012年烟台卷)下列一元二次方程两实数根的和为-4的是().  相似文献   

11.
周知,一元二次方程ax~2÷bx c=0(a≠0)的根与二次函数f(x)=ax~2 bx c(a≠0)的图象之间有着密切的联系。在探求二次函数的图象与x轴有无交点的的问题中常利用一元二次方程的根的情况来考察;反之,也可以从二次函数的图象的某些特征来考察一元二次方程的根的情况。本文对系数含参数的一元二次方程已知根的某些性质,利用二次函数图象的特征来求出参数这个问题作一探讨。 例1 已知关于x的方程2x~2-6x 3m=0的两个实数根都大于1,求m的取值范围。 分析:学生往往用韦达定理来解如下: 设方程2x~2-6x 3m=0的两根为x_1、x_2。  相似文献   

12.
盛敏 《中学理科》2002,(7):13-14
如果x1、x2是一元二次方程似ax^2 bx c=0(a≠0)的两个根,由根与系数的关系(即韦达定理),不解方程,可以求下列代数式的值:  相似文献   

13.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

14.
<正>所谓一元二次方程实数根的分布问题,是指通过分析含参数的一元二次方程实数根所满足的条件,确定参数的取值范围.本文将借助解方程、根的判别式、韦达定理、不等式组、二次函数图象等知识点,探索一元二次方程实数根分布问题的解题策略,供大家参考.一、求根法若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,则x=  相似文献   

15.
若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=-b/a,x1·x2=c/a.这就是一元二次方程的根与系数的关系,又称"韦达定理".由韦达定理可得:  相似文献   

16.
一元二次方程ax~2+bx+c=0和二次函数y=ax~2+bx+c的关系密不可分。在y=ax~2+bx+c中,当y=0时,就变成了ax~2+bx+c=0。而一元二次方程ax~2+bx+c=0的两根x_1,x_2,就是二次函数y=ax~2+bx+c的图象与x轴交点的横坐标。因此,根与系数的关系不但可以用于方程这中,也常用于二次函数之中。 一 求待定系数的值 例1 抛物线y=x~2-(2m-1)x-2m与x轴的  相似文献   

17.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

18.
若x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根,则有ax1^2+bx1+c=0,ax2^2+bx2+c=0.反之,若ax1^2+bx1+c=0,ax2^2+bx2+c=0,且x1≠x2,则x1,x2是一元二次方程ax^2+bx+c=0的两根。  相似文献   

19.
在实数范围内,一元二次方程ax2 bx c=0 (a≠0)有两个实根x1、x2,则x1 x2=-b/a,x1x2=c/a. 注意在实数范围内应用根与系数关系的前提条件是a≠0且△≥0.它的应用主要体现在不解方程或无法解方程的情况下,直接沟通方程系数与根之间的关系.现举例如下: 一、由根的性质求方程中未知数的值例1 已知关于x的方程2x2-mx-2m 1=0的两实根的平方和等于29/4,求m的值. 解:设方程的两实根为x1、x2则得x1 x2=m/2,  相似文献   

20.
一元二次方程是初中代数的重要内容,它是一种只含有一个未知数,并且未知数的最高次数是2的整式方程.其一般形式为ax2+bx+c=0(a≠0).学习了一元二次方程根的意义、解法及其根的判别式后,灵活利用它们,可迅速地解答一些竞赛试题.一、灵活利用根的意义若x0是一元二次方程ax2+bx+c=0的根,那么ax_0~2+bx0+c=0,反之,若ax_0~2+bx0+c=0(a≠0),那么x0是一元二次方程ax2+bx+c=0的根.例1 已知a是方程x2-3x+1=0的根,则2a2-5a-2+3/a2+1的值是__.(1996年昆明市初中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号