首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

2.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

3.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

4.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

5.
求函数f(x,y)=x~2 y~2在条件x y=1下的最小值,通常有如下几种解法: 解法一 应用一元函数的配方法 由条件x十y=1,得y=1—x,将其代入f(x,y)=x~2 y~2,得到一元函数 f(x)=x~2 (1—x)~2=2x~2-2x 1=2(x-1/2)~2 1/2(1)因为(x-1/2)~2≥0,故由(1)式知,当x=1/2时,函数f(x)取最小值。将x=1/2代入y-1—x,得y=1/2。因此,当x=1/2,y=1/2时,函数f(x,y)-x~2 y~2在条件x y=1下取最小值(1/2)~2  相似文献   

6.
众所皆知,增设性构作给某些数学问题的求解带来化繁为简的生机,但不恰当的增设性构作给某些数学问题的解答蒙上消极被动的阴影,未必被众人所晓,下面对此进行剖析。一只图形式忽视本质增设性构作常诞生于审析问题的形式结构之中,初步产生后将继续结合问题解答的需要逐步修正完善,千万可可忽视,修正完善过程。例1 求函数f(x)=x+(1-x~2)~(1/2)的值域。错解:设x=sinθ,则y=sinθ+cosθ=(2sin(θ+σ/4))~(1/2) 函数f(x)的值域是[-2~(1/2),2~(1/2)]。剖析:这里仅注意f(x)的定义域与三角函数值域之关系,选用三角代换,而忽视了x=sinθ时,(1-x~2)~(1/2)=cosθ≥0并非对任意实数θ恒成立。应将增设修正为x=sinθ,θ∈[-1/2π,1/2π],得出正确结果[-1,2~(1/2)]。例2 求函数y=(x~2-8x+17)~(1/2)+(x~2+4)~(1/2)的最小值。错解:∵ y=((x-4)~2+1)~(1/2)+((x~2+2~2)~(1/2) ∴设z_1=(x-4)+i,z_2=-x-2i, 则y=|z_1|+|z_2|≥|z_1+z_2|=(17)~(1/2),y的最小值是(17)~(1/2)。  相似文献   

7.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

8.
早在初中代数课上,就已经知道了两数和的平方公式 (x y)~2=x~2 2xy y~2(1)、这一公式的应用是极其广泛的。在这里,我们介绍它的部分应用。 一、推证公式问题 以下乘法公式 (x-y)~2=x~2-2xy y~2 (x y)(x-y)=x~2-y~2 (x y)~3=x~3 3x~2y 3xy~2 y~3 (x-y)~3=x~3-3x~2y 3xy~2-y~3 (x-y)(x~2 xy y~2)=x~3-y~3 (x y)(x~2-xy y~2)=X~3 y~3等都可运用公式(1)来推导 例1、求证:(x y)(x-y)=x~2=y~2 证:令a=(x y)/2,b=(x-y)/2, 则两数x、y的平方差,x~2-y~2=(a b)~2-(a-b)~2运用公式(1)有x~2-y~2=4ab据假设条件,得x~2-y~2=4(x y)/2·(x-y)/2,即x~2-y~2=(x y)(x-y) 例2、求证:(x-y)~3=x~3-3x~2y 3xy~2-y~3 证:将上式右端进行配方变换即得证 x~3-3x~2y 3xy~2-y~3 =x~3-2x~2y xy~2-x~2y 2xy~2-y~3 =x(x-y)~2-y(x-y)~2 =(x-y)~3 类似地,乘法公式都可用公式(1)来推导,此外,还可推证一些多项因式的乘法  相似文献   

9.
现行全日制普通中学数学教科书 (试验修订本·必修 )第二册 (上 )第七章“直线和圆的方程”中有这样一道习题 :求函数 f (θ) =sinθ- 1cosθ- 2 的最大值和最小值 .编者把此题放在这里 ,意图十分明显 ,就是可把 f (θ) =sinθ- 1cosθ- 2 看成是定点 ( 2 ,1 )与单位圆 x2 + y2= 1上的动点 ( cosθ,sinθ)连线的斜率 ,从而问题转化为求斜率的最大值和最小值 .笔者由此得到启发 ,对动点在常见曲线上的“分式三角函数”的最值问题作如下探讨 ,供教与学中参考 .1 构造直线例 1 求 y=3sin x- 1sin x+ 2 的最值 .分析 因为 y=3sin x- 1sin x- …  相似文献   

10.
请看下面的问题:当变数x,y满足条件:4x~2-5xy 4y~2=5时,求函数W=x~2 y~2的最大值和最小值。显然这是一个条件极值问题。联想到x~2 y~2表示动点P(x,y)到原点的距离平方,因此本题实际上是求曲线4x~2-5xy 4y~2=5上的动点P(x,y)到原点的距离(的平方)的极值问题。从这个几何意义及方程4x~2-5xy 4y~2=5的对称性出发,我们至少可以得到以下四种解法:  相似文献   

11.
我们知道:过两曲线c_1:f(x,y)=0;c_2:g(x,y)=0的交点(如果存在的话)的曲线系方程为:f(x,y)+λ-g(x,y)=0(λ为参数)。在进行高三数学综合复习时,使学生能够熟练地使用曲线系方程来解决问题,对培养解题的能力是大有好处的。下面举例说明在教学大纲的范围内的一些应用。例1:已知两条相交曲线:x~2/16-y~2/9=1和x~2/25+y~2/9=1,试证:(1) 这两条曲线的交点在椭圆2x~2/41+y~2/41=1上;(2) 有无穷多条双曲线过这两曲线的交点。此题若按一般解法,求交点,再代入椭圆方程检  相似文献   

12.
谈一题多解     
<正>在多年的数学教学实践中,为了激发学生的积极性,引导学生探讨一些习题的不同解法,这对培养学生的能力,开发学生的智力都起着十分重要的作用.例如 对弧长的曲线积分:(?)l (x~2+y~2)~(1/2)ds其中l为园周x~2+y~2=ax解法如下:法一 令 x=rcosθ y=rsinθ则园周x~2+y~2=ax可变为r=acosθ且-(π/2)≤θ≤(π/2),如图一∵ds=(r~2+r~(12)~(1/2)dθ=adθ 且(x~2+y~2)~(1/2)=r=acosθ∴(?)l(x~2+y~2)~(1/2)ds法二取θ为参数,如图二∵OA=acosθ -π/2≤θ≤π/2  相似文献   

13.
一、混淆曲线y=f(x)在点P处的切线与过点P的切线例1已知曲线y=f(x)=(1/3)x~3上一点P(2,8/3),求过点P的切线方程。错解:f′(x)=x~2.设过点P的切线的斜率为k,则k=f′(2)=4.  相似文献   

14.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

15.
运用极坐标法证明这类问题时,主要利用两点p_1(ρ_1,θ_1)、p_2(ρ_2,θ_2)间的距离公式:|p_1p_2|=(p_1~2+p_2~2-2ρ_1ρ_2cos(θ_1-θ_2))~(1/2)和过这两点的直线p_1p_1的方程:sin(θ_2-θ_1)/ρ=sin(θ_2-θ)/ρ_1+sin(θ-θ_1)/ρ_2。这一公式和方程都可利用坐标互化公式:x=pcosθ、y=ρsinθ代入直角坐标系的相应公式和方程中,结合三角知识得到, 这类问题的证法和步骤是: 第一步,首先按照几何图肜的特点,适当建立极坐标系,并根据题设,设置有关各点的坐标; 第二步,再应用上述公式和方程求出有关线段的  相似文献   

16.
三角法解几何题是较为常见的,三角法解代数题则较为少见。下面略举不同类型代数题的三角解法,其目的在于揭示三角代换法常用时机,常用范围及使用技巧。〈一〉分解因式例1.已知x~2-y~2-z~2=0试将x~3-y~3-z~3分解因式解:由已知得:y~2+z~2=x~2令y=xsinθz=xcosθ则 x~3-y~3-z~3=x~3(1-sin~3θ-cos~3θ) =x~3(sin~2θ-sin~3θ+cos~2θ-cos~3θ) =x~3[sin~2θ(1-sinθ)+cos~2θ(1-cosθ)] =x~3[(1-cos~2θ)(1-sinθ)-(1-sin~2θ)(1-cosθ)] =x~3(1-sinθ)(1-cosθ)(1+cosθ+1+sinθ) =(x-xsinθ)(x-xcosθ)(2x+xcosθ+xsinθ)  相似文献   

17.
一、x~2+y~2的条件极值若f(x,y)=0,求x~2+y~2的极值。设x~2+y~2=c~2,则所求条件极值就是c~2的极值。而x~2+y~2=c~2是以原点为圆心,c为半径的圆族,于是x~2+y~2的条件极值就是圆族x~2+y~2=c~2中c~2的极值。由于x~2+y~2中的(x,y)必满足条件  相似文献   

18.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

19.
把曲线的极坐标方程化为直角坐标方程,如果化法不当就会化错,例如江苏教育学院,无锡市教学研究室编的高中、数学第二册教学参考书中(以下简称参考书)有两处就发生了错误第一处是习题二十三9题(1),把ρ=5tgθ化为直角坐标方程,参考书中的答案是x(x~2+y~2)~(1/2)=5y。根据答案可知题目的作法是以ρ=(x~2+y~2)~(1/2),tgθ=y/x代到ρ=5tgθ中  相似文献   

20.
<正>类似"实数x,y满足Ax~2+Bxy+Cy~2=D(D≠0),求S=ux~2+vxy+wy~2的取值范围"的问题在各类高中数学竞赛中经常出现.本文根据x,y的齐次特点,通过换元,把这类问题统一转化为求一元分式函数f(t)=(u+vt+wt~2)/(A+Bt+Ct~2)的值域问题.这种解法体现了消元和转化的思想,供大家参考.例1(1993年全国高中数学联赛试题)实数x,y满足4x~2-5xy+4y~2=5,设S=x~2+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号