首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]、[2]中给出了凸函数的一般定义,讨论了不同条件下凸函数的一些基本性质及其判定定理。本文将在此基础上进一步地给出一般条件下凸函数的又一个等价命题及其若干简单应用。凸函数定义称函数 f(x)为区间Ⅰ上的凸函数。如果(?)x,y∈I,(?)λ∈(0,1)有(?)λx+(1—λ)y]≤λf(x)+((?)-λ)f(y)。在这个一般定义下,[1],[2]得到了凸函数的几个判定定理:定理1 下面几个命题等价:(1) f(x)为区间Ⅰ上的凸函数;  相似文献   

2.
文[1]介绍了定理"已知函数f(x)在区间I上可导,x0∈I,若f(x)在区间I上为下凸函数,则f(x)≥f(x0)(x-x0)+f(x0);若f(x)在区间I上为上凸函数,则不等号反向."并利用它来证明一类对称不等式.事实上,当函数f(x)在区间I上可导时,定理中的不等式与琴生不等式等价,且这类对称不等式用琴生不等式证明更显简洁、高效.  相似文献   

3.
<正>凸函数定义:设f(x)为定义在区间I上的函数,若对I上任意两数x1,x2和实数λ,总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称f为I上的凸函数.凸函数判定定理为:设f为I上的二阶可导函数,则f为I上的凸函数的充要条件是在I  相似文献   

4.
胡浩鑫 《考试周刊》2008,(22):111-112
凹凸性是函数的重要性质,定义为:若函数f(x)在开区间I有定义,且对任意的x1,x2∈I,t∈(0,1)均有f[tx, (1-t)x,]≥(≤)tf(x1) (1-t)f(x2|)成立,则称f(x)在区间I上是凹(凸)函数.函数凹凸性的判定常用如下定理:设f(x)在I内二阶可导,则f(x)是I上的凹(凸)函数的充要条件是f″(x)≤(≥)0,(x∈I).若f(x)在I上是凸函数,则-f(x)在I上为凹函数,所以讨论凸函数可以转化为讨论凹函数.  相似文献   

5.
由函数单调性的定义容易知道:(1)若函数f(x)在区间I上单调递增,且x1,x2∈I,则f(x1)x2;(3)若函数f(x)在区间I上单调,且x1,x2∈I,则f(x1)=f(x2)x1=x2;根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用的技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.下面举例说明这一思想在解题中的若干应用.一、求值例1设x,y为实数,且满足(x-1)3+1997(x-1)=-1(y-1)3+1997(y-1)=1,则x+y=.解:由已知条件,可得:(x-1)3+1997(x…  相似文献   

6.
第一试 一、选择题(每小题6分,共36分) 1.给出下列命题: (1)若f(x)、g(x)在区间I上都是增函数,则f(g(x))在I上是增函数; (2)若f(x)、g(x)在区间I上都是减函数,则f(g(x))在I上是减函数; (3)若f(x)在区间I上是增函数,g(x)在区间I上是减函数,则f(g(x))在I上是增函数; (4)若f(x)在区间I上是增函数,g(x)在区间I上是减函数,则f(g(x))在I上是减函数. 其中,正确命题的个数为( ).  相似文献   

7.
定义:设函数y=f(x)在区间I上有定义,若对于任何两点x_1,x_2∈I(x_1相似文献   

8.
我们知道,不等式的证明方法繁多,各种方法各显其能,一般来说可分为两大类:一类是初等方法,另一类是高等方法。下面浅谈数学分析中所诱导出关于不等式的若干证法。一、单调性:定理:区间I上的可导函数f(x),如果在I内部的x恒有f′(x)>O)(n时(m,n均为自然数)(1+n)m>(1+m)~n  相似文献   

9.
先将积分中值定理复述如下:定理1 如果 f(t)为区间[a,x]上的连续函数,那么存在数 c∈(a,x),使得∫_a~xf(t)dt=f(c)(x-a).任何学过初等微积分的人都熟知这个重要的定理。但当 x 趋于 a 时,c 的值如何呢?实际上,这时 c的值将趋于 a 和 x 的中点。这一事实往往不被人们注意。下面给出这个结论及其简短的证明。定理2 如果 f(t)在 a 点可微,f′  相似文献   

10.
解决函数零点存在问题常使用函数零点存在定理:函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.但这个定理的逆命题是不成立的,即函数y=f(x)在开区间(a,b)上有零点,则f(a)f(b)<0不一定成立,所以定理中的条件仅是函数f(x)在(a,b)上有零点的充分条件,而不是充要条件.  相似文献   

11.
积分的计算有很强的技巧性,有些题目利用一般方法计算很繁琐,甚至有的很难得到正确结果.而恰当地利用被积函数与积分区间的对称性可以使积分计算化繁为简.如此可以达到事半功倍的效果.定理1:设 f(x)在[-a,a]上连续,且为奇函数,则∫_(-a)~af(x)dx=0;若 f(x)在[-a,a]上为偶函数,则∫_(-a)~af(x)dx=2∫_0~af(x)dx.此定理的证明许多教材已经给出,在此省略.注:定理中的函数必须是对称区间上的奇、偶函数,才会有定理的结论.例1:计算 I=∫_-1~1|x|In(x (1 x~2)~(1/2))dx解;因为区间[-1,1]为对称区间,且被积函数 f(x)=|x|In(x (1 x~2)~(1/2))为连续的奇函数,所以由定理1,可得 I=0.  相似文献   

12.
设函数f(x)定义在区间I上且x1,x2∈I,则①若函数f(x)在区间I上是单调增(或减)函数,则x1f(x2)).②若函数f(x)在区间I上是单调函数,则x1=x2f(x1)=f(x2).③若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.④若函数f(x)与g(x)的单调性相同,则在它们公共的定义域内,函数f(x) g(x)亦与它们的单调性相同.⑤复合函数y=f(u)(u=g(x))的单调性适合“同增异减”规律,即若f(x)与g(x)的单调性相同(或相异),则y=f[g(x)]为增(或减)函数.⑥互为反函数的两个函数在各自的定义域内具有相同的单调性.运用…  相似文献   

13.
众所周知,定义在某区间I上的函数:y=f(x),若存在二阶导数,则下面两个不等式成立。(参考文[1]) (甲)当x∈I,恒有y″>0(这时f(x)为下凸函数)  相似文献   

14.
六年制高中课本《代数》第一册谈到偶函数图象时,有下面的定理: 定理1 偶函数的图象关于y轴成轴对称图形;反过来,如果一个函数的图象关于y轴成轴对称图形,那么这个函数是偶函数. 定理1也可叙述为:适合条件f(-x)=f(x)的函数y=f(x)的图象关于直线x=0成轴对称图形;反过来,如果函数y=f(x)的图象关于直线x=0成轴对称图形,那么这个函数适合条件f(-x)=f(x).  相似文献   

15.
本文得到了判断函数f(x)在区间I上一致连续的三个定理.  相似文献   

16.
人教A版必修1给出了判断函数零点的定理,即零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根,这个定理比较抽象,要理解它并能较好地加以应用,应注意从四个方面加以把握。  相似文献   

17.
定义:一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量的值x,,x:,当x,f(x:)),那么就说f(x)在这个区间上是增函数(或减函数). 一、定义剖析 设区间A二I,把定义分解为三块: 1 .x,f(x:)); 3.f(x)在区间A上是增函数(或减函数)‘ 二、结论挖掘 )冷2;}冷1;3】3} 八O 冷..工O︸︼ 由三、结论应用(一)二补3 【例1]判断f(x)一石在区间(0,十二)上的单调性. 解:设o相似文献   

18.
1981年M.Josephy[1]证明,设g∶I→I,那么为使对于一切中的取值I的f,gof在BV中的充要条件是g在I上满足Lipschitz条件,本文中BV我们考虑把这个定理推广到∧BV类和∨[v]类,证明了二个定理: 定理1 设∧={λk}是给定的不减正数列,∑ 1/λ_k=∞又设g∶I→I,为使对于一切I→I的∧BV函数f(x),复合函数gof∈∧BV,当且仅当g是满足Lipschitz条件 定理2 设V={v(n)}为给定的非减且凸的正数列,g∶I→I,为使对于一切I→I的V[v]函数f(x),复合函数gof∈V[v]当且仅当g(x)满足Lipschitz条件。  相似文献   

19.
零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.传统的函数零点存在性定理的考查,如:  相似文献   

20.
函数f(x)在区间I上一致连续,可得f(x)在区间I上连续,反之不一定.若I为有限闭区间[a,b],据Cantor定理,f(x)在[a,b]上连续等价于f(x)在[a,b]上一致连续.通过几个具体例题的证明,探讨了开区间以及无穷区间上一致连续与连续的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号