共查询到20条相似文献,搜索用时 0 毫秒
1.
<正>数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点.这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常要用到放缩法,而求解途径一般有两条,一是先求和再放缩,二是先放缩再求和. 相似文献
2.
高考数学复习过程中,一些与数列前n项和有关的不等式证明问题频频出现,下面我们通过典型例题的解析,来阐述此类问题的解题策略. 相似文献
3.
文[1]在“目标分析策略”中提出:通过目标值或目标式的分析常常能得到放缩的路径,又在相应例题中提到利用等比数列放缩,阅后很受启发. 相似文献
4.
数列求和不等式的证明,历来是高考数学命题的热点与重点,并且往往出现在压轴题的位置上,扮演着调整试卷区分度的角色.笔者发现对这类问题的处理方法中,以放缩法较为常用,而学生在运用放缩法时普遍感到难以驾驭,本文重点谈谈通项放缩与舍项放缩两种放缩技巧在证明数列求和不等式中的应用. 相似文献
5.
6.
近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力. 相似文献
7.
数列解答题是高考命题的一类必考的难度较大的试题,其命题热点是与不等式交汇的、呈现递推关系的综合性试题.数列与不等式一结合,难度就增大了,灵活性就高了,本文重点叙述这类不等式证明的常见放缩技巧.[第一段] 相似文献
8.
近几年,浙江省数学高考的压轴题都是与数列有关的不等式证明,需要一定的技巧对不等式进行合理的放缩.由于教材中涉及这方面的问题并不多,虽然放缩法的本质是基于最初等的四则运算,但对大部分学生甚至教师来说,在面对这类考题时,往往显得无措.本文以数列求和不等式的证明为例,试图对此作些探究. 相似文献
9.
数列问题始终是高考的一大亮点,在高考中可谓常考常新,尤其是近些年来数列与不等式的融合更成为高考命题者的新宠,而其中对放缩法的把握需要学生有较强的分析和判断能力,因而倍受命题者的青睐,下面举例对放缩的技巧加以总结,供参考。 相似文献
10.
刘宜兵 《中学数学研究(江西师大)》2005,(9):33-35
近几年各地高考试题中,压轴题多以数列不等式为主,而处理这类不等式的最重要方法(也是主要方法)为放缩法.而放缩法往往有变形灵活,技巧性强,难度大等特点.放缩时若不按照一定目标去"有的放矢",则往往是"白算半天"仍不能求解.针对这一现象,本文介绍几种常见"放缩目标",在解证这类题时,有目的的"奔向"这些"目标",使得问题快速获解. 相似文献
11.
<正> 在现行教材中证明不等式主要介绍了三种常规方法,即比较法、综合法和分析法.比较法是一种最基本、最重要的方法;综合法是由因导果;分析法则是执果索因.但在实际运用这些方法证明不等式 相似文献
12.
张润泽 《数理天地(高中版)》2011,(12):14-15,17
与前n项和相关的数列不等式,一般要对通项公式进行放缩,但放缩时的尺度比较难把握,有时过大,有时又太小,这就需要不断对目标式进行研究并进行相应地调整.本文介绍一种从求证的目标式出发,先通过裂项拆分将前n项问题转化为通项问题,再用分析法寻找解题思路,下面举例说明. 相似文献
13.
14.
数学的本质往往是最简单的,看似没有“规律”的往往是最有规律的;教师应该是教学的创造者和雕塑家,而不是“搬运工” 相似文献
15.
数列和不等式是高考的两大热点也是难点,数列是高中数学中一个重要的内容,在高等数学也有很重要的地位,不等式是高中数学培养学生思维能力的一个突出的内容,它可以体现数学思维中的很多方法,当两者结合在一起的时候,问题会变得非常的灵活. 相似文献
16.
17.
18.
数列求和不等式的证明,历来是高考数学命题的热点与重点,并且往往出现在压轴题的位置上,扮演着调整试卷区分度的角色.笔者发现,对这类问题的处理方法中,以放缩法较为常用,而学生在运用放缩法时普遍感到难以驾驭.本文重点谈谈通项放缩与舍项放缩两种放缩技巧在证明数列求和不等式中的应用. 相似文献
19.
在文献[1]中,给出了一类特殊数列的前n项和公式。本文进一步推广了[1]中的结果。命题1设{an}是公差d≠0的等差数列,则命题1证率。田命题1可推出[1]中的公式一和三。推论1·1([1],公式一)推论1·2([1],公式三)命题2设{a}是公差为d≠0的等差数列,且ai≠0,i=1,2…,r≥2,则命题2证毕。由命题2可推出[1]中的公式二和四。推论2·1([1],公式二)若r≥2,则关于一类特殊数列的前n项和公式@刘春峰$锦州师专@郑秋丰$锦州太和八中数列;;前n项和;;公差[1] 唐兴国,一类持殊数列的前n项和公式.数学通报,1994.1… 相似文献
20.
有关数列和型不等式的证明既是高考的重点题型,也是教材的难点.其思维跨度大、构造性强,能较好地考查学生思维的严谨性.其中,放缩法是证明数列和型不等式的常用方法,它能迅速化繁为简,达到事半功倍的效果.下面通过例题的形式,介绍利用放缩法证明此类不等式的几种策略. 相似文献