首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
深刻理解有关概念是学好“数的开方”这一章的关键,特别是平方根和算术平方根这两个核心概念.它们既有联系又有区别,如果理解不透彻,就会在解题中出错.下面就怎样学习“数的开方”谈点意见.一、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根.换句话说,如果x2=a,那么x就叫做a的平方根.例如3和-3的平方都等于9,所以3和-3都是9的平方根,也就是说9的平方根是±3.放任何正数都有两个平方根,它们互为相反数.由于02=0,因此零的平方根是零.总起来说,正数和零都有平方根,正数的平方根是一对相反数,零的平方根是零.为…  相似文献   

2.
2要点剖析2.1平方根、算术平方根、立方根的概念(1)平方根:如果一个数的平方等于a,那么这个数叫做a的平方根(或二次方根).正数a有两个平方根,它们互为相反数;零的平方根是0;负数没有平方根.  相似文献   

3.
陈德前 《初中生》2009,(9):98-99
如果一个数x的平方等于a,那么x叫做a的平方根,记作x=±√a(a≥0).平方根有以下性质:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.正数a的正的平方根叫做a的算术平方根,记作√a(a≥0),0的算术平方根是0.  相似文献   

4.
如果一个数x的平方等于a,那么这个数x叫做a的平方根,记做x=±姨a(a≥0)。平方根具有以下性质:(1)正数的平方根有两个,它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。正数a的正的平方根叫做a的算术平方根,记做姨a(a≥0),0的算术平方根是0。算术平方根具有两个非负性:(1)  相似文献   

5.
平方根与算术平方根是联系密切而又有区别的两个概念 ,学好这两个概念应注意以下几点。一、理解并掌握它们的定义平方根 :如果一个数的平方等于a ,那么这个数就叫a的平方根 ,也就是说 ,如果x2 =a ,那么x就叫a的平方根。算术平方根 :正数a的正的平方根的叫做a的算术平方根。例如 (± 3) 2 =9,我们说 3与 - 3是 9的平方根 ,一个正数有两个平方根 ,它们互为相反数 ,而正的那个平方根就是它的算术平方根 ,如 9的平方根是± 3,其中 3是 9的算术平方根。对于特殊的数 0 ,它的平方根与算术平方根都是 0。因为任何数的平方都是非负数 ,所以只有正数…  相似文献   

6.
平方根与算术平方根是两个极为重要的概念,它们之间既有本质区别,又有着密切的联系.初学时,不少同学对这两个概念容易混淆.为了避免学习时出现错误,同学们在学习平方根与算术平方根时应注意以下几点.一、正确理解平方根与算术平方根的意义如果一个数的平方等于a,那么这个数就叫做a的平方根,即如果x2=a,那么x就叫做a的平方根.如(±7)2=49,我们就说+7与-7是49的平方根.由于02=0,而且任何不为0的数的平方都不等于0,所以0的平方根只有一个,就是0本身.由于正数、0、负数的平方都不是负数,所以负数没有…  相似文献   

7.
赵春祥 《初中生》2008,(11):18-20
如果x2=a,那么x就叫做a的平方根,正数a的正平方根,叫做a的算术平方根.对平方根与算术平方根应注意以下几点:(1)一个数的平方等于a,那么这个数的相反数的平方也一定等于a,因此正数有两个平方根,这两个平方根互为相反数;  相似文献   

8.
问本章的重点、难点是什么?学习本章的关键何在?答本章的重点是平方根、算术平方根的概念及求法。难点是算术平方根的概念和实数的概念.学习本章的关键在于透彻理解平方根。算术平方根、无理数、实数等主要概念.问怎样理解平方根和算术平方根?答回到定义去.先看平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,意即如果x2=a,那么x就叫做a的平方根,记作±.因为不论x是正数、0或负数,总有x2≥0,所以。a≥0.可见当a是正数或O时,它才有平方根。而,否则而就没有意义.由于任何数的平方都不等于负数,所以负数没有…  相似文献   

9.
平方根与算术平方根是“数的开方”一章中两个最重要的概念,它们既有联系又有区别,很容易混淆.有的同学由于对这两个概念认识不清,经常出现“16的平方根是4”,等错误.为了帮助同学们加深对这两个概念的理解,现将二者的区别与联系归纳、总结如下.供参考.一、区别1.定义不同平方根的定义是:如果一个数的平方等于a那么这个数就叫做a的平方根(或二次方根).就是说.若。x2=a,则。就叫故a的平方根.零的平方很是零.例如,6和-6的平方都等于36,所以(和一6都是36的平方根.算术平方根的定义是:正数。的正的平方根m做a的算术平方…  相似文献   

10.
一、填空题(每空3分,共33分):1.如果一个数的平方等于a,那么这个数就叫做a的________;正数a有两个平方根,其中正数a的正的平方根,叫做________.2.的算术平方根是________;的平方根是________3.若1.53则________4.一般地,正数的偶次方根有两个,它们互为________;正数的奇次方根是一个________,负数的奇次方根是一个________.5.________6.在中,为有理?数的是________,为无理数的是________二、判断题(正确的在括号邮画“v”,不正确的画“x”.每小题3分,共18分):1.的平方根是2.任何实数都有一个且只有一个立…  相似文献   

11.
平方根和算术平方根是两个重要概念 ,它们之间很容易混淆 ,只有注意它们之间的区别和联系 ,才能更好地应用它们解题。一、区别1.定义不同 :如果 x2 =a,那么 x就叫做 a的平方根 ;如果 x2= a,且 x≥ 0 ,那么 x叫做 a的算术平方根。2 .个数不同 :一个正数的平方根有两个 ;一个正数的算术平方根只有一个。3.表示不同 ,读法不同 :正数 a的平方根表示为± a ,读作“正、负根号 a”;正数 a的算术平方根表示为 a ,读作“根号a”。4 .结果性质不同 :非负数的平方根是一对相反数 ;非负数的算术平方根一定是非负数。二、联系1.包含关系 :平方根中包含算…  相似文献   

12.
一 注意理解平方根、算术平方根的定义 1.平方根的定义. 如果一个数的平方等于a,那么这个数就叫做a的平方根.就是说,如果x~2=a,那么x就叫做a的平方根. 关于平方根,要注意以下几个问题: (1)当a>0时,正数a有两个平方根,记作±a~(1/2),正数a的两个平方根互为相反数. (2)0的平方根是0.  相似文献   

13.
一、平方根例 1.判断下列说法是否正确 :(1) 0的平方根是 0 ;(2 ) 1的平方根是 1;(3) - 1的平方根是 - 1;(4 ) (- 1) 2的平方根是 - 1。解 :根据平方根概念知 :(1)正确 ;(2 )不正确 (漏掉一个 - 1) ;(3)不正确 (负数没有平方根 ) ;(4 )不正确 (漏掉一个 1)。评注 :任意一个数 ,可能有平方根 ,也可能没有平方根 ,一个数 a的平方根是否存在是由 a本身决定的。(1)如果 a>0 ,则有两个平方根 ,并且互为相反数 ,表示为± a。(2 )如果 a=0 ,则 a的平方根仍是 0 ;(3)如果 a<0 ,则 a没有平方根 ,因为任何正数、零、负数的平方不可能为负数 ,所以由平…  相似文献   

14.
如果x2=a,那么x就叫做a的平方根.正数a的正平方根,叫做a的算术平方根.对平方根与算术平方根应注意以下几点:(1)一个数的平方等于a,那么这个数的相反数的平方也一定等  相似文献   

15.
一、知识要点本章主要学习了数的开方的有关概念,用计算器求数的平方根、立方根的方法,实数的概念。这些内容通过列表可供同学们比较记忆。二、概念辨析平方根与算术平方根的区别与联系。1.区别:(1)正数a的平方根有两个,即±,它们互为相反数,而正数a的算术平方根只有一个,即。(2)算术平方根的值一定是非负数,而平方根的值不一定是非负数。(3)一个正数的算术平方根一定是它的平方根,而一个正数的平方根不一定是它的算术平方根。2.联系:(1)算术平方根也是平方根,平方根与算术平方根的被开方数是非负数。(2)零的平方根与算平方根相同,负数既没…  相似文献   

16.
在下文中,我们列出了12个似是而非的问题,请你辨析一下,是对还是错。 1.一个数的平方根有两个,它们互为相反数。辨析只有正数才有两个平方根,它们互为相反数;零只有一个平方根,就是零;负数没有平方根。 2.一个数的正的平方根就是算术平方根。  相似文献   

17.
我们知道,如果一个数的平方等于a((显然a≥0).这个数就叫做a的平方根,记作±a~(1/2),即一个正数的平方根有两个,这两个数互为相反数.其中正的平方根叫做a的算术平方根,记作a~(1/2)的平方根和算术平方根均为0,从这里可以看出:  相似文献   

18.
一、知识点1.有理数的分类2.数轴的三要素:原点、正方向和单位长度.3.有理数的大小比较:在数轴上表示的若干个数,右边的数总比左边的数大.由此可以知道:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.4相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数,0的相反数是G;(2)在数轴上表示互为相反数的两个数(0除外)的点,分别在原点的两旁,且到原点的距离相等;()数a的相反数是一a.5.绝对值的意义:一个数a的绝对值就是数轴上表示数a的点到原点的距离,所以当;。>O…  相似文献   

19.
一、填空题(每小题4分,共24分):1.如果收入50元记作+50元,那么支出50无记作40元表示2.下列各教:-15,0.3,0,+1.2,-1,其中整数有个,分数有个,正数有个,负数有个.3.的相反数是,和是互为相反数.4.绝对值大于1.4且小干4.6的整数共有、个,它们的和是.5.如果a、b两数在数轴上的位置如图,那么|a+b|=.6.如果a=-a,那么a=。如果x-(-a)=b,那么x=.二、判断题(正确的在括号内画“×”“√”,不正确的在话号内画“×”每小题4分,共16分):1.正数和负数统称有理数.2如果|x|=5,那么x=5.3零是最小的…  相似文献   

20.
一、从定义去理解只有符号不同的两个数,我们称其中一个是另一个的相反数,这两个数互为相反数.此定义主要包含以下3点:互.相反数是数,不是量;2、“相反’:指的是符号不同;3.相反数是成对出现的,是一对只有符号不同的数.比如,6是一6的相反数,-6是6的相反数,6与一6互为相反数.一般地,数a的相反数是一a,这里a表示任意的一个数,可以是正数或负数.由于零既不是正数,也不是负数,因此我们规定,0的相反数是0.二、从在数轴上的位置去理解互为相反数的两个数,还可以直观地在数轴上表示出来,数轴上表示它们的点到原点的距离…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号