首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
An experimental study was made of the electrical discharge between parallel plates when the pressure between the plates had been reduced to a value slightly less than the critical pressure—i.e. to the condition when a tube begins to harden. Under these conditions the application of a transverse magnetic field will produce a discharge between the electrodes for potentials less than the normal potential required. It is believed that this is due to the lengthening of the path traversed by the ions in crossing the gap. The results obtained may be harmonized by means of the values found by Carr (Proc. Roy. Soc. 1903) who made a study of Paschen's Law in the region of critical pressure. In general it is found possible, under the conditions studied, to start a discharge and control the value of the current through a circuit of which the gap is a part by means of varying the magnetic field superposed on the gap and without altering either the impressed E.M.F. or the ohmic resistance of the circuit.This control is effected by altering the effective length of the spark gap in the circuit by means of the external magnetic field.  相似文献   

10.
11.
12.
13.
14.
15.
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position.  相似文献   

16.
17.
Wang S  Zhu Y 《Biomicrofluidics》2012,6(2):24116-2411612
Effective manipulation and understanding of the structural and dynamic behaviors of a single polyelectrolyte (PE) under alternating current (AC) electric fields are of great scientific and technological importance because of its intimate relevance to emerging bionanotechnology. In this work, we employ fluorescence correlation spectroscopy (FCS) to study the conformational and AC-electrokinetic behaviors of a model annealed PE, poly(2-vinyl pyridine) (P2VP) under both spatially uniform and non-uniform AC fields at a single molecule level. Under spatially uniform AC-fields, we observe a gradual and continuous coil-to-globule conformational transition (CGT) of single P2VP at varied AC-frequency when a critical AC-field strength is exceeded, in contrast to the pH-induced abrupt CGT in the absence of AC-fields. On the contrary, under spatially non-uniform AC-fields, we observe field-driven net flow and accumulation of P2VP near high AC-field regions due to combined AC electro-osmosis and dielectrophoresis but surprisingly no conformational change. Thus, distinct AC-electric polarization effect on single annealed PE subject to AC-field homogeneity is suggested.  相似文献   

18.
The time-dependent nucleation phase is critical to amyloid fibrillation and related to many pathologies, in which the conversion from natively folded amyloidogenic proteins to oligomers via nucleation is often hypothesized as a possible underlying mechanism. In this work, non-uniform AC-electric fields across two asymmetric electrodes were explored to control and examine the aggregation of insulin, a model amyloid protein, in aqueous buffer solution at constant temperature (20 °C) by fluorescence correlation spectroscopy and fluorescence microscopy. Insulin was rapidly concentrated in a strong AC-field by imposed AC-electroosmosis flow over an optimal frequency range of 0.5–2 kHz. In the presence of an AC-field, direct fibrillation from insulin monomers without the formation of oligomer precursors was observed. Once the insulin concentration had nearly doubled its initial concentration, insulin aggregates were observed in solution. The measured lag time for the onset of insulin aggregation, determined from the abrupt reduction in insulin concentration in solution, was significantly shortened from months or years in the absence of AC-fields to 1 min–3 h under AC-fields. The ability of external fields to alter amyloid nucleation kinetics provides insights into the onset of amyloid fibrillation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号