首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
微分中值定理证明中的辅助函数   总被引:1,自引:0,他引:1  
本文阐述了用辅助函数证明拉格朗日中值定理的重要性,并得出两个结果: ①证明拉格朗日中值定理的辅助函数为:4(x)=[f(x)-((f(b)-f(a))/(b-a))x]+C;证明柯西中值定理的辅助函数为:相似文献   

2.
微分学中,费尔马(Fermat)定理、罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理因为都涉及导数在给定区间内的一个中间值,因此把这些定理叫做微分学中值定理。它们是微分学的理论基础。 费尔马定理 若函数f(x)在点x_0的某邻域U(x_0,δ)内有极值,且在点x_0可导,则f(x_0)=0,它的几何意义是如果曲线y=f(x)在点x_0处具有极值且有切线,则切线必为水平的。由费尔马定理可以导出下面的罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且有f(a)=f(b),则在(a,b)内至少有一点ξ,使f(ξ)=0。  相似文献   

3.
“若函数f(x)与g(x)满足下列条件:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,且对任意x∈(a,b),g′(x)≠0。则在(a,b)内至少存在一点ξ,使 (f(b)-f(a))/(g(b)-g(a))=f′(ξ)/g′(ξ) (*)” 众所周知,这是微分学的基本定理之一:柯西中值定理((*)式称为微分中值公式)。关于它的证明,关健是在于恰当地构造一个辅助函数,再利用罗尔定理。一般教科书上构造的辅助函数是:F(x)=f(x)-f(a)-(f(b)-f(a))/(g(b)-g(a))[g(x)-g(a)]  相似文献   

4.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

5.
文[1]给出了柯西中值定理的一个新证法。该证法一反常规,不是利用罗尔定理进行证明,而是以文献[2]给出的: (1°)予备定理 设函数f(x)在点x_o处有有穷导数。若这导数f′(x_o)>0f′(x_o)<0),则当x取右方充分接近于x_o的数值时就有f(x)>f(x_o)(f(x)f(x_o))。 (2°)达布定理 若函数f(x)在区间[a,b]上有有穷导数,则函数f′(x)必至少有一次取得介于f′(a)及f′(b)  相似文献   

6.
本文着重说明应用微分中值定理证明不等式时,函数f(x)的选取方法,介绍一些用初等数学方法不易证明的或证明步骤较繁的不等式,而用微分中值定理可以简捷地解决的情形,其中关键是要选择好函数f(x)。微分中值定理是:“若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在开区间(a,b)内至少有一点ξ,使得 f′(ξ)=(f(b)-f(a))/(b-a)”。用微分中值定理证明不等式的主要依据是选定符合微分中值定理条件的函数f(x)后,若在所讨论的区间内有m相似文献   

7.
洛比达法则作为导数的应用是解决不定型极限的强有力的工具,在数学分析中该法则的证明要借助柯西中值定理,特别是∞/∞型时法则的证明相当繁冗.笔者在适当改变或加强条件的情况下将其证明明大大简化.  相似文献   

8.
[1]中对解的延拓定理叙述如下: 解的延拓定理:如果方程 dy/dx=f (x,y) (1) 右端的函数f (x,y,)在有界区域G中连续,且在G内关于y满足局部的利普希茨(Lipschitz)条件,那末方程(1)的通过G内任何一点(x_0,Y_0)的解y=φ (x)可以延拓,直到点(x,φ.(x))任意接近区域G的边界。以向x增大的一方的延拓来说,如果y=φ(x)只能延拓到区间x_0≤x≤m上,则当x→m时,(x,φ(x))趋于区域G的边界。  相似文献   

9.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

10.
文[1]中的定理3给出了结论(ii)满足(1)式的中间点ξ=ξ(x)是x的可导函数,其导数为ξ′(x)=f′(x)g′(ξ(x)-f′(ξ(x))g′(x))(x-a)[f″(ξ(x))g′(ξ(x))-f′(ξ(x))g″(ξ(x))]。文[1]在推导此等式时用到了柯西中值定理,本文指出在推导过程中使用柯西中值定理存在的问题,并给出例子对存在的问题作出详细的说明。  相似文献   

11.
《谈拉格朗日中值定理和柯西中值定理的证明》一文(见本刊1984年第3期)为柯西中值定理的证明提供了一种比较自然的基于罗尔定理的证明方法,简单明了。用这种方法同样可证明泰勒中值定理,且也很简明、自然。泰勒中值定理可以叙述成这样:设函数 f(x)在开区间(c,d)内有直到 n 1阶的导数,设 a,b 为(c,d)内的任意两点。则  相似文献   

12.
本文证明当α≠1时,sinx~α,cosx~α,tgx~α,ctgx~α均非周期函数. [定理1]若f(x)≠a且lim f(x)=a,则f(x)不是周期函数.(见文[1]) [定理2]设f(x)在任一有限区间上都是有界的,且存在一点列{x_α},使limf(x)=∞,则f(x)  相似文献   

13.
罗尔定理、拉格朗日定理、柯西定理统称为微分学中值定理。这几个定理是在定义了导数的概念并且在掌握了微分法的基础上,为了进一步研究导数的更深刻的性质而逐步引入的。为探索拉格日定理的一些问题,先回顾一下罗尔定理的内容:如果函数f(x)满足(1)在闭区间[a、b]上连续;(2)在开区间(a,b)内可导;(3)在区间端点的函数值相等,即f(a)=f(b)。那么在(a,b)内至少有一点ξ(a<ξ相似文献   

14.
在一般的教材中,三个中值定理的证明顺序依次为 Rolle 定理、Lagrange 定理和 Cauchy 定理。本文按与上述完全相反的顺序给出证明,使整个证明显得比较简捷。定理一若 f(x),g(x)满足1°在[a,b]上连续;2°在(a,b)内可导,则存在一点ξ(ξ∈(a,b)),使  相似文献   

15.
用作辅助函数来证明一些结论,是数学分析的一个重要手段和技巧,师范院校的学生懂得和掌握这种技巧是一件有益的事情.现以数例说明.一、关于函数介值的问题一些涉及到函数介值的问题,可以用辅助函数加以解决.[例1]设函数f(x)在[0,1]上可导,且00,F(1)=f(1)-1<0,而F(x)在[0,1]上是连续函数,依介值定理知(?)x_0∈(0,1),使F(x_0)=0,即f(x_0)=x_0  相似文献   

16.
微分中值定理的证明 由罗尔中值定理得出: 定理一:若函数f(x),至少存在一点屯,乙〔(a, If(a、 }f(b、 !f,(仓)证明:作辅助函数F(x) g(x),印(x)是[a,b),使得:‘(a)甲(a)g(b)甲(b)g‘(屯)甲产(忿)b〕上的连续函数,在(.,b)内可导,败g(a)g(b)g(x)甲(a)甲(b)甲(x)﹄、.尹、.了、.少 a .bX了了.、了.、r、rl厂Tl .11.leses.....口.J................ △F(x)二因为f(x)户g(x),甲(x)在[。,b]上连续,在(a,b)内可导,所以F(x)在〔a,b〕上连续,在(a,,b)内可导,且F(a)=F(b)二0由罗尔中值定理得,在(a,b)内至少存在一点毛,使得F(七)=O,从而有: }f(a)g(…  相似文献   

17.
中学数学中的最值和极值问题,是中学数学的重要内容之一,也是数学教学的难点之一.本文就这一问题,结合自己的教学实践,谈一些肤浅体会.一、关于函数的最值与极值的概念1.最值定义:设函数y=f(x),在[a,b]内有定义,如果有x_0e[a,b],使得对于任一xe[a,b]都有f(x)≤f(x_0)(或f(x)≥f(x_0))成立,则称函数f(x)在点x_0,处有最大(小)值f(x_0).  相似文献   

18.
微分中值定理包括罗尔中值定理 ,拉格朗日中值定理 ,柯西中值定理 ,泰勒公式 .这些定理都是在给定条件下 ,确定了在区间内存在一点 ,使函数在该点具有某种特性 ,但是这些定理却没给出这种点在区间内的位置 .为此讨论当区间 [a ,x]的长度趋近于零时 ,这些定理所确定的中间点ξ在 [a ,x]内的渐进性 ,给出了极限limx→a(ξ -a) / (x-a) 的值 .  相似文献   

19.
一般数学分析教材中(如[1]),都给出多元函数可微的充分性定理是:偏导数f′_x,,f′_y,f′_z不仅在点(x_0,y_0,z_0)处存在,并在它的某一邻域内也存在,此外,它们(作为x,y,z的函数)在这点连续,则函数u=f(x,y,z)在点(x_0,y_0,z_0)处可微。文[2]用另一种方法证明Henle的如下定理:如f:R~2→R的偏导数存在,且至少有一个偏导数连续,则f可微。文[2]并指出这定理在n≥3元时的相应命题一般不真。  相似文献   

20.
在高等数学的很多问题,特别是中值命题中,常通过构造辅助函数的方法达到解决问题的目的,而辅助函数往往与题设中的已知函数密切相关,也就是说,辅助函数的构造离不开已知函数,如拉格朗日定理证明中的辅助函数φ(x)=f(α)f(b)b--fα(α)(x-α)与柯西定理中的辅助函数F(x)=-f(α)-gf((bb))--fg((αα))[b(x)-g(α)]均由题设中函数f(x)或g(x)及其端点的函数值构成。在中值命题中,还有较广泛一类零点问题需用已知函数的导数f‘(x)、ex等特殊函数去构造辅助函数,使命题的假设与结论之间搭建更为便捷的桥梁,从而达到化难为易的目的。本文就几个常用特殊函数对辅助函数的构造予举例说明。1用已知函数f(x)的导数f‘(x)构造辅助函数例1若函数f(x)在区间[α,b]上具有二阶导数,f(x)与f‘‘(x)同号,且f(x)在任何小区间上不恒为零,则f(x)或f‘(x)在[α,b]上至多有一个零点。分析:由结论,可考虑构造辅助函数F(x)=f(x)f‘(x),对其求导,便有f‘2(x)+f‘‘(x)f(x)。由已知条件知,f(x)在[α,b]可导,且x∈[α,b],F‘(x)=f‘2(x)+...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号