首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summaries

English

Science teachers’ perceptions of affective‐domainobjectives were gathered through interview procedures. A sample of teachers in Western Australian high schools were the subjects of the study.

For the purpose of analysis, a distinction is drawn between attitudes to science (such as ‘enjoyment of science lessons’ and ‘interest in science') and scientific attitudes (such as ‘honesty in reporting data’and ‘tolerance of the views of others').

Analysis of teachers’ views revealed confusion and lack of clarity regarding these science‐related attitudes. However, it is argued that curriculum writers are no clearer in their views.

It is suggested that a much clearer, more explicit justification for attitude objectives (of both kinds) needs to be made by curriculum writers. Science teachers need to be provided with greater assistance in clarifying the role of these attitude objectives, as well as assistance with techniques for their assessment.  相似文献   

2.
Erduran  Sibel 《Science & Education》2022,31(5):1101-1104
Science & Education -  相似文献   

3.
Self-efficacy beliefs that relate to teachers’ motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers’ science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers’ science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants’ science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants’ responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.  相似文献   

4.
5.
6.
The article,which discusses the relationship between the policy of flourishing China by science and(3ducatlon and continuing education, Is divided Into two parts,  相似文献   

7.
The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers’ perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers’ perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers’ professional development for the implementation of standards.  相似文献   

8.
To gain a better understanding of teachers’ beliefs about teaching, as compared with their in-reality classroom practices, case studies were constructed with four science teachers in different schools in Egypt. The main aims of this article were to provide an answer to the research question, ‘To what extent do science teachers’ beliefs correspond to their practices?’ and to explore the contextual factors that can explain the difference, the consistency or inconsistency, between teachers' beliefs and practices. The study collected data for each teacher using semi-structured interviews, notes taken while observing classes, and teachers’ notes, journals, and lesson plans concerned with STS lessons. The data were analysed using the constant comparative method around common themes, which were identified as distinctive features of teachers’ beliefs; these same themes were then compared with their practices. Results showed that a few of the in-service science teachers’ pedagogical beliefs aligned with constructivist philosophy. Some of the teachers’ beliefs were consistent with their practices, especially the traditional beliefs, while some of teachers’ practices were conflicted with their beliefs in different contexts.  相似文献   

9.
Scientific inquiry is both theoretical and empirical. It succeeds by bringing thought into productive harmony with the observable universe, and thus, students can attain a robust understanding of the nature of science (NOS) only by developing a balanced appreciation of both these dimensions. In this article, I examine naïve empiricism, a teaching pattern that deters understanding of NOS by attributing to observation scientific achievements that have been wrought by a partnership of thought and empirical experience. My more specific concern is the naïve empiricism promoted when teachers illustrate NOS through historical anecdotes about conflict between science and religion. Since the religious actors depicted in such accounts appear to reject evidence, these narratives lead readers to suppose that scientists draw their conclusions in exactly the opposite way, from empiricism alone. I illustrate this pattern by examining two representative treatments of the Copernican revolution. My methods are historical and critical.  相似文献   

10.
11.
Science & Education - The obstacles and difficulties that science teachers face when teaching the nature of science (NOS) are well-known. Nonetheless, little is known of what science teacher...  相似文献   

12.
In recent years, there has been an increasing interest among educational researchers in exploring the relationships between learners’ epistemological beliefs and their conceptions of learning. This study was conducted to investigate these relationships particularly in the domain of science. The participants in this study included 407 Taiwanese college science‐major students. All of them responded to two major questionnaires, one assessing their scientific epistemological beliefs (SEBs) and the other one probing their conceptions of learning science (COLS). The SEB questionnaire included four factors: “certainty,” “source,” “development,” and “justification” of science knowledge. The COLS survey consisted of six factors in a hierarchical order, that is, learning science as “memorizing,” “preparing for tests,” “calculating and practicing,” “increasing one’s knowledge,” “application,” and “understanding and seeing in a new way.” The students’ confidence and interest toward learning science were also assessed by additional questionnaire items. Stepwise regression analyses, in general, showed coherence between students’ SEBs and their COLS, indicating that the sophistication of SEBs was consistent with less agreement with lower‐level COLS (such as “memorizing” and “preparing for tests”) as well as more agreement with higher‐level COLS (such as “understanding and seeing in a new way”). However, the SEB’s “justification” factor was positively related to almost all of COLS factors from the lower‐level to higher‐level. This study finally found that among all of the SEB and COLS factors, the “preparing for tests” factor in COLS was the solely significant variable for predicting students’ interest in science and confidence toward learning science.  相似文献   

13.
The interrelationship between senior high school students’ science achievement (SA) and their self‐confidence and interest in science (SCIS) was explored with a representative sample of approximately 1,044 11th‐grade students from 30 classes attending four high schools throughout Taiwan. Statistical analyses indicated that a statistically significant correlation existed between students’ SA and their SCIS with a moderate effect size; the correlation is even higher with almost large effect sizes for a subsample of higher‐SCIS and lower‐SCIS students. Results of t‐test analysis also revealed that there were significant mean differences in students’ SA and their knowledge (including physics, chemistry, biology, and earth sciences subscales) and reasoning skill subtests scores between higher‐SCIS and lower‐SCIS students, with generally large effect sizes. Stepwise regression analyses on higher‐SCIS and lower‐SCIS students also suggested that both students’ SCIS subscales significantly explain the variance of their SA, knowledge, and reasoning ability with large effect sizes.  相似文献   

14.
Since many teachers and students recognize other kinds of knowledge (faith) based on other ways of knowing, consideration of these realities is appropriate for the science education community. Understanding the multitude of ways that clergy view relationships between science and faith (i.e. alternative ways of knowing) would assist in understanding various ways that people address complex issues arising from ideas about science and faith. We administered a questionnaire composed of multiple-choice and short answer items to 63 United Methodist ministers. Findings included (1) that formal, organized faith contexts (e.g. church services) serve as informal science education opportunities, (2) participants demonstrated considerable diversity regarding the types of relationships developed between science and faith, and (3) participants recognized a need exists for better understandings of science and its relationship to faith for them, their colleagues, and their congregations.
Daniel L. Dickerson (Corresponding author)Email:
Karen R. DawkinsEmail:
John E. PenickEmail:
  相似文献   

15.
The purpose of this study was to explore the impact of an intervention on pre-service science teachers’ self-efficacy to teach science through argumentation and explore the challenges they experienced while implementing argumentation. Forty pre-service science teachers in their final semester of schooling participated in an intervention that lasted for 11 weeks. Intervention focused on participants’ understanding of argumentation as a scientific practice and as a pedagogical tool. The participants engaged in argument construction, evaluation, and critique, taught three argumentation lessons, engaged in peer observation of teaching, and reflection on their teaching skills. Data were collected through Argumentation Self-Efficacy Scale and an open-ended questionnaire. The results show that the intervention had a significantly positive effect on pre-service teachers’ self-efficacy. Despite this reported self-efficacy, participants experienced significant challenges in guiding their students to construct scientific arguments and assessing the arguments developed by their students. Discussion focuses on implications for professional development of pre-service and in-service science teachers.  相似文献   

16.
There is a current national emphasis on science, technology, engineering, and mathematics (STEM). Additionally, many states are transitioning to the Next Generation Science Standards (NGSS), which encourage teachers to incorporate engineering in science classrooms as well as have their students learn science by doing science. Methods courses are also shifting to adequately prepare preservice science teachers in these areas. This study examines preservice science teachers’ pre- and post-ideal inquiry-based lesson plan scenarios before and after intervention in their Secondary Science Methods I and II courses. These preservice science teachers participated in a variety of opportunities to practice authentic science inquiry (ASI) pedagogical techniques as well as integrated STEM topics, with a particular emphasis on computer programming throughout their 80 h of Methods instruction. ASI is a type of inquiry where students learn science by conducting science research in a grade-appropriate manner. Thirty-eight preservice teachers’ scenarios were analyzed using a rubric from Spuck (2014) to determine the degree to which the ten components of ASI were included in scenarios pre- to post-instruction. Trends in ASI component inclusion are discussed. These findings indicate that preservice science teachers are proficient at writing inquiry-based lessons where they planned opportunities for their future students to collaborate, use scientific instrumentation, and collect and analyze data, but need additional support with developing student activities where students create testable questions, revise their question and methods, participate in peer review, and disseminate their results to their peers or the larger scientific community. Overall, the results suggest Methods instruction should reinforce preservice teachers’ focus on planning lessons which include opportunities for all ASI components. Interventions in the aforementioned areas of weak inclusion may be beneficial to preservice teachers.  相似文献   

17.
This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students?? non-Indigenous teacher played a central role in developing a science module ??Measuring Time?? that combined Amis knowledge and Western science knowledge. The study identified two cultural worldview perspectives on time; for example, the place-based cyclical time held by the Amis, and the universal rectilinear time presupposed by scientists. Students?? pre-instructional fragmented concepts from both knowledge systems became more informed and refined through their engagement in ??Measuring Time??. Students?? increased interest and pride in their Amis culture were noted.  相似文献   

18.
Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers’ beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and child outcomes. However, little is known about how teachers’ self-efficacy for literacy, math and science compare and how domain-specific self-efficacy relates to teachers’ practice in the area of science. Analysis of survey and observation data from 67 Head Start classrooms across eight programs indicated that domain-specific self-efficacy was highest for literacy, significantly lower for science, and lowest for math. Classrooms varied, but in general, engaged in literacy far more than science, contained a modest amount of science materials, and their instructional support of science was low. Importantly, self-efficacy for science, but not literacy or math, related to teachers frequency of engaging children in science instruction. Teachers’ education and experience did not predict self-efficacy for science. Practice or Policy: To enhance the science opportunities provided in early childhood classrooms, pre-service and in-service education programs should provide teachers with content and practices for science rather than focusing exclusively on literacy.  相似文献   

19.
Mit BGBl I 2006/69 wurde das Bundesgesetz über das Institute of Science and Technology – Austria erlassen. Der folgende Beitrag besch?ftigt sich mit der Rechtsform, den gesetzliche Aufgaben, der innere Organisation, der studienrechtliche Ausgestaltung sowie der Finanzierung des I.S.T. Austria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号