首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
第四章多元函数微分学一、主要教学内容1.多元函数的基本概念主要是二元函数,其概念的要素还是对应关系与定义域,二元函数的定义域是平面上的某个区域,对应关系一般表示为:z=f(x,y) (x,y)∈D例如,设 z=f(x,y)=sin(x y)则 f(0,0)=sin(0 0)=sin0=0f(π/2,π/2)=sin(π/2 π/2)=sin=0f(t,s)=sin(t s)2.偏导数与全微分设 z=f(x,y),则  相似文献   

2.
刘开军 《职教论坛》2003,(20):62-62
充分条件、必要条件、充要条件是研究命题条件和结论的相互关系时常用的数学术语,下面在微分中说明这些条件的应用。一、充分条件假言判断“若A则B”为真,则称条件A是B的充分条件。简言之,“有此则必然,无此未必不然”。例1若函数y=f(x)在点x0有极值,且f(x0)存在,则函数y=f(x)在点x0的导数为零,即f’(x0)=0。分析很明显,当函数y=f(x)在点x0有极值且导数存在时,根据导数的几何意义,函数所表示的曲线在该点的切线平行于x轴,即有f’(x0)=0。但倒过来说,“若函数y=f(x)在点x0的导数为零,则函数y=f(x)在点x0有极值”就不一定成立了。因为使y=f(…  相似文献   

3.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

4.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

5.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f(′x),从而构成一个新的函数f(′x),称这个函数f(′x)为函数y=f(x)在开区间内的导函数.f(′x)=y′=limΔx→0ΔyΔx=limΔx→0f(x Δx)-f(x)Δx.那么函数y  相似文献   

6.
<正>一、函数的对称性定理1:若函数y=f(x)定义域为R,且满足条件:f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=(a+b)/2对称。定理2:若函数y=f(x)定义域为R,且满足条件:f(a+x)+f(b-x)=c(a,b,c为常数),则函数y=f(x)的图像关于点  相似文献   

7.
众所周知,导数y′=f′(x0)的几何意义,是曲线y=f(x)以P(x0,f(x0))为切点所作切线的斜率.相对于传统知识而言,由导数所衍生出的"曲线的切线  相似文献   

8.
童其林 《新高考》2011,(11):38-41
零点定理是新教材中增加的一个重要定理,在解题中有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.即方程f(x)=0有实数根图像y=f(x)与x轴有交点函数y=f(x)有零点.什么是零点定理呢?如  相似文献   

9.
<正> 假定x(t,t_0,x_0)和y(t,t_0,y_0)分别表示非线性微分方程组 x′=f(t,x) (1) 和非线性微分方程组 y′=f(t,y)+g(t,y) (2)的通过点(t_0,x_0)和(t_0,y_0)的解。这里f(t,0)=0,g(t,0)=0,t>0,且f,g是某个区域I×D上的连续函数,f在这个区域还是可微的。其中I是区间0≤f<∞,D是n维X—空间的一个区域。 由上述假定 是关于(1)的解x(t,t_0,x_0)的变分系统  相似文献   

10.
零点定理是必修1(人教版)的内容,是新教材新增的一个重要定理,有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.零点定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,且满足f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c  相似文献   

11.
型如:y=m√g(x) n√f(x),其中g(x) f(x)=c(常数),mn>0的式子均可化为y=(1)/√(c)[m√(g(x))/(c) n√(f(x))/(c)]的形式,再利用三角代换来求最值.  相似文献   

12.
微分学是微积分学的重要的组成部分,而导数是微分学的基本概念之一,因此学生在学习微积分的内容时要时刻抓住导数概念这个关键。通过教学实践及对学生练习中错题的错因分析,笔者认为在理解导数概念时学生需注意以下问题:(一)充分理解导数定义的形式已知函数y=f(x)在点x=x0处可导,那么导数的定义式可取不同的形式,常见的有以下三种:f'(x0)=△lix→m0f(x0 △△xx)-f(x0);f'(x0)=lhi→m0f(x0 hh)-f(x0);f'(x0)=lxi→mx0f(x)-f(x0)x-x0。在这三种常见的形式中要注意1、弄清在怎样的变化过程中求极限,如△x→0,h→0或是x→x0,变化过程不同则分式…  相似文献   

13.
一、利用导数求单调区间例1已知函数f(x)=x3 bx2 cx d,它的图像过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y 7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.解析(1)由函数f(x)的图像过点P(0,2),可知d=2,所以f(x)=x3 bx2 cx 2,则有f′(x)=3x2 2bx c.由函数f(x)在  相似文献   

14.
<正>导数在研究函数性质中有哪些应用呢?下面结合具体的实例进行分析。一、利用导数研究函数的单调性例1设函数f(x)=aln x+x-1/x+1,其中a为常数。(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性。  相似文献   

15.
<正>一、化归思想在函数中的运用例1已知函数y=x3-3x+c的图像与x轴相交有两个公共点,求c值。证明:因为y=x3-3x+c的图像与x轴相交有两个公共点,求c值。证明:因为y=x3-3x+c,所以y′=3x3-3x+c,所以y′=3x2-3=3(x+1)(x-1)。所以当x=±1时,函数存在极值。由于y_(x=1)=0或者是y_(x=-1)=0,就可以得出c-2=0或c+2=0,即c=±2。二、化归思想在不等式中的运用不等式是高中数学中较为重要的内容,这种解题方法通常会与函数方程进行进行紧  相似文献   

16.
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a.b)对称的充要条件是:f(x) f(2a-x)=2b推论:函数y=f(x)的图像关于原点O对称的充要条件是:f(x) f(-x)=0定理2.函数f=f(x)的图像关于直线x=a对称的充要条件是:f(a x)=f(a-x)即f(x)=f(2a-x)推论:函数y=f(x)的图像关于y轴对称的充要条件是:f(x)=f(-x)定理3①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。二、不同函数对称性的探究定理4.函数y=f(x)与y=2b-f...  相似文献   

17.
在高中代数中,常常遇见形如y=(ax b)/(cx d)(1)(c≠0,a~2 b~2≠0,bc-ad≠0)的函数,我们称为线性分式函数,其中常数c≠0,是因为若c=0,这就不是分式函数,而是一次函数或常数了,若a~2 b~2=0,则a=b=0,y=0是一个常数,或称常值函数,而若bc=ad则a/c=b/d,函数(1)的解析式变成y=(a/c x b/c)/(x d/c)=(b/d x b/c)/(x d/c)=(b/d(x d/c))/(x d/c)=b/d,也  相似文献   

18.
<正>湖北省部分重点中学2012——2013学年度上学期联考高一数学试卷第10题是:已知函数f(x)=ax2+bx+c(x∈R)(a>0)的零点为x1,x2(x1相似文献   

19.
论极值问题     
极值在理论和实际中,有多方面应用,本文想就此问题进行较详细论述。为了缩减篇幅,凡一般教课书中讲到的问题,证明从略。 (一)予备知识 (1)有关高阶微分 ①如果y=f(x)有直到n阶的导数,则它的n阶微分为d~ny=y~(n)dx~n(dx为常数) ②如果u=f(x,y)有直到n阶的连续偏导数,则它的n阶微分为  相似文献   

20.
丁永刚 《高中生》2008,(18):20-21
原题已知函数f(x)的定义域为(0, ∞),且对于任意的正实数x、y都有f(xy)=f(x) f(y).当x>1时,f(x)>0,f(4)=1.(1)求证:f(1)=0.(2)求f(116).(3)解不等式:f(x) f(x-3)≤1.一、教学过程老师:如何证明f(1)=0?学生1:令x=1,y=1,得f(1)=f(1×1)=f(1) f(1)=2f(1),∴f(1)=0.学生2:令x=4,y=1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号