首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>图形的旋转变换是一种重要的几何变换.当条件中出现了中点、中线、等腰三角形、等边三角形、正方形等时,可考虑用图形的旋转变换构造全等的三角形,以集中条件,从而达到解题的目的.现举例加以分析,供大家参考.  相似文献   

2.
旋转变换指的是将平面图形绕定点(旋转中心)按一定方向旋转一个角度(旋转角).得到与原来图形的形状和大小都一样的图形的变换过程.旋转变换在几何中有广泛的应用,特别是有关等边三角形、正方形的问题的求解,更是经常用到它。  相似文献   

3.
轴对称图形沿某直线折叠后直线两旁的部分是一定可以互相重合的,实际区分轴对称图形时,关键要抓住两点:一是沿某直线折叠,二是两部分能否互相重合,能重合的是轴对称图形,否则不是轴对称图形.常见的轴对称图形有:线段、等腰三角形、等边三角形、等腰梯形、矩形、菱形、正方形、圆等.[第一段]  相似文献   

4.
旋转变换多用在正方形、正三角形、等腰三角形等较规则的图形上,通过旋转,可将分散的条件和结论相对集中,从而找到解决问题的途径.  相似文献   

5.
旋转变换是经常应用的一种几何变换 .将平面图形绕一个定点 ,按一定方向旋转一个角度 ,得到与原来图形的形状和大小都一样的图形 ,这样的变换我们称为旋转变换 .常应用于等腰三角形、正三角形、正方形等比较特殊的图形中 .在教学中有意识组织这方面的训练 ,既可发现解题思路 ,使一些题目化难为易 ,而且还有利于培养学生的变换能力 .现举例说明如下 :例 1 在Δ ABC中 ,AB=AC,D是Δ ABC内一点 ,∠ ADB>∠ ADC,(见图一 )求证 :DC>DB.证明 :∵ AB=AC,将 ΔABD绕 A点逆时针连结 DE,于是ΔABD≌ΔACE,故 BD=CE ∠ ADB=∠ AEC…  相似文献   

6.
世界充满着运动,大到天体、星球,小到原子、粒子,其中最简单的主要是平移、旋转及对称等运动.  相似文献   

7.
旋转变换在平面几何解题中有着广泛的应用,特别是当条件中出现等腰三角形、正三角形、正方形、中线(或中点)时,常考虑通过图形的旋转构造全等三角形,以集中条件,求得问题的解决.常用旋转法求解的题目有两类.  相似文献   

8.
三角形是最简单的多边形.几何中的许多问题.往往通过全等三角形来解决.在运用全等三角形证明或计算时.关键是寻找相关的全等三角形.并找出全等所满足的条件.这两个全等三角形一般可看成一个三角形是另一个三角形经过某种几何变换得来的.下面几例都是等边三角形旋转变换问题一我们以此为例探讨旋转在几何证明和探索中的应用。  相似文献   

9.
初中新课程标准虽然降低了几何逻辑推理的要求,但在几何变换(平移、轴对称、旋转、位似)方面加强不少,这在各地历年中考也都有明显的体现(如本文例6).本文特别谈谈旋转变换,对于它的性质,人教版教材上归纳了如下几条:性质1:旋转前后图形的形状,大小不变(即全  相似文献   

10.
图形变换是义务教育阶段数学课程中“空间与图形”的一个重要内容.其中旋转变换,就是将平面图形的各点绕着某定点旋转(顺时针或逆时针)某一定角得到一个新的图形,此时定点叫旋转中心,定角叫旋转角.旋转变换有如下特征:(1)变换后的图形与原图形全等.(2)对应点到旋转中心的距离相等.(3)对应点与旋转中心连线所成的角度等于旋转的角度.  相似文献   

11.
图形的变换源于现实生活中的物体运动、变化,它是对物体运动、变化的数学抽象.具体的图形变换形式有平移变换、轴对称变换、旋转变换和位似变换,这些变换涉及图形的形状、大小、位置、方向四个方面.其中,平移变换不改变图形的形状、大小、方向,只是改变了图形的位置,而轴对称变换、旋转变换(包括中心对称变换)也不改变图形的形状、大小,但改变了图形的方向和位置,位似变换只  相似文献   

12.
图1中的大正方形面积是小正方形面积的几倍?图2中大等边三角形的面积是小等边三角形面积的几倍?你能不通过计算就给出答案吗?  相似文献   

13.
等边三角形、正方形、圆堪称平面几何图形中最完美的常用图形,令人称奇的是用这三个完美图形竟能组合成一个从形式到结果都极完美的图形.  相似文献   

14.
旋转变换是图形的基本变换之一,它虽然可以改变图形的位置,但不会改变图形中线段的长度和角的大小.因此,我们可以应用这一性质对某些需要变换的图形进行适当的变换,从而找到解决问题的最佳途径.那么,如何灵活地运用旋转变换解题呢?下面举例说明,希望能够对同学们有所启迪.一、利用旋转构造特殊三角形  相似文献   

15.
在初中几何的学习中,几何图形的变换是我们学习的难点也是亮点.往往在图形的巧妙变化中,在解决这些变化的思考过程和美妙体验中,蕴涵其中的数学技巧和方法才会逐步显现其真面目,同时数学经验才会得到升华,数学之美才会得以充分展现.下面我们举例说明.  相似文献   

16.
只改变图形的位置,而不改变其形状大小,使几何图形重新组合,产生新的图形关系,从而找到解决问题的途径,这是进行几何变换的目的.其中旋转变换是最常见的手段之一.那么,什么时候考虑用旋转变换,又怎样运用旋转变换呢?下面结合例题谈谈旋转变换在平面几何中的应用.  相似文献   

17.
本文利用几何变换给出一类完美图形及某些性质.用大小(规格)不同的正方块拼铺成一个大正方形(无缝隙、无重叠,下同)称之为“完美正方形”.  相似文献   

18.
将一个图形绕着某定点按一定的方向旋转一个角度得到另一个图形,就叫做旋转.和平移、轴对称一样,旋转也是一种图形变换,它在新课程中独成一章,所处的地位日显重要.旋转变换在平面几何及社会实践中有着广泛的应用,特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,  相似文献   

19.
四年级的同学们已学习了三角形的知识,关于三角形的分类有两种方法,下面同学们就一起来复习一下吧!一、按角分类:可以把三角形分为锐角三角形、直角三角形和钝角三角形。每种三角形各有什么特点呢?1.三个角都是锐角的三角形叫做锐角三角形(如图1)。2.有一个角是直角的三角形叫做直角三角形(如图2)。  相似文献   

20.
在平面内将一个图形绕着这个平面内的某个固定点旋转一个角度,这样的变换叫做旋转变换.在初中数学学习过程中,经常会碰到这类问题,要解决这一类几何问题,我们可以利用旋转变换的性质来解决普通方法难以解决的很多问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号