首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

2.
一、数形结合,善于观察图形,充分运用平面几何知识,寻找解题途径 例1 已知点P(5,0)和圆O:x2 +y2=16,过P作直线l与圆O交于A、B两点,求弦AB中点M的轨迹方程. 解:因为点M是弦AB中点,所以∠OMP=90°.点M是在以OP为直径的圆周上,此圆的圆心为(5/2,0),半径为5/2,其方程为(x-5/2)2+y2=(5/2)2,即 x2+y2-5x=0.  相似文献   

3.
在讲授椭圆这部分内容时,我曾给学生出了这样一道题目:“过点P(2,1)作直线与椭圆x2/16 y2/4=1交于A、B两点,若点P平分弦AB,求弦AB所在的直线方程.”学生很快就想出了两种解法:一种是设弦AB所在的直线方程为y-1=k(x-2),然后将直线方程代入椭圆方程来解题;另一种是用两点法. 这时,有一个学生举手,说自己还有第三种解法,她的解法如下: 如图1,设A(x,y),因为点P平分弦AB,所以B点坐标为(4-x,2-y). 因为A、B两点在椭圆x2 4y2=16上,  相似文献   

4.
在讲授椭圆这部分内容时,我曾给学生出了这样一道题目:"过点P(2,1)作直线与椭圆x2/a2+y2/b2=1交于A、B两点,若点P平分弦AB,求弦AB所在的直线方程."学生很快就想出了两种解法:一种是设弦AB所在的直线方程为y-1=k(x-2),然后将直线方程代入椭圆方程来解题;另一种是用两点法.  相似文献   

5.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1+x2+p=2x+p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1+x2/2.  相似文献   

6.
我们把椭圆x2/a2+y2/b2=1的参数方程{x=acosθ y=bsinθ意一点P(acosθ,bsinθ)的离心角.本文介绍与椭圆的离心角相关的两个有趣性质供读者参考. 性质1 椭圆(或圆)x2/a2+y2/b2=1(a>0,b>0)的两条相交弦AB,CD的四个端点共圆的充要条件是这四个端点的离心角之和为周角的整数倍.  相似文献   

7.
在解有关解析几何问题时,可先根据题设条件,构造一个辅助圆,然后运用平几中有关圆的特性将问题转化,使其获得简解·【例1】已知圆O:x2+y2=R2及圆外一点P(a,b),过点P作圆O的两条切线PA、PB,切点分别为A、B,求直线AB的方程·分析:以P为圆心,以PA为半径构造一个圆,可将问题转化为求两圆的公共弦方程,从而简便求解·如图,由切线长定理及切线的性质得PA=PB,且|PA|2=|PO|2-|OA|2,于是以P为圆心,以PA为半径的圆方程:(x-a)2+(y-b)2=a2+b2-R2,①它与已知圆O:x2+y2=R2,②交于A、B两点·故由①—②得ax+by-R2=0,即为所求直线AB的方程·…  相似文献   

8.
若点P(x_0,y_0)为定点,则圆锥曲线的过P点且被P点平分的弦简称以定点P为中点的弦.本文给出几种圆锥曲线的以定点为中点的弦所在的直线方程,并说明方程的具体应用. 定理1 若点P(x_0,y_0)在圆C:x~2+y~2=r~2(r>0)内,且P异于圆的圆心,则圆C的以P为中点  相似文献   

9.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

10.
徐文春 《中学教研》2014,(3):F0003-F0003,F0004
正题目如图1,设P(x0,y0)为椭圆x2/4+y2=1内一定点(不在坐标轴上),过点P的2条直线分别与椭圆交于点A,C和B,D,若AB∥CD.(1)证明:直线AB的斜率为定值;(2)过点P作AB的平行线,与椭圆交于点E,F,证明:点P平分EF.(2013年全国高中数学联赛湖北省预赛高二试题)1本质解读此题考查椭圆中相交弦的性质,渗透着圆锥曲线与直线的基本知识和方法,试题简洁,结论优美且  相似文献   

11.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

12.
众所周知,圆有如下性质:过圆222x+y=r(r>0)外一点作圆的切线,PB(PPAA,B为切点),则OP平分弦AB;当∠APB为90时,点P在以O为圆心,2r为半径的圆上.通过类比,笔者发现圆锥曲线也有类似的性质.性质1过圆锥曲线外一点作它的切线,PPA  相似文献   

13.
题目:已知动圆过定点(p2,0)且与直线x=-p2相切,其中p>0.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该点的坐标.(Ⅱ)解法1设点A(x1,y1),B(x2,y2),则x1=y212p,x2=y222p.由题意知x1≠x2(否则α+β=π),x1,x2≠0,y1≠y2,y1,y2≠0,tanα=2py1,tanβ=2py2.因为AB=(x2-x1,y2-y1)=(y22-y212p,y2-y1),设点p(x,y)为AB上任一点,则AP=(x-y212p,y-y1),AP∥AB.于是y22-y212p(y-y1)=(y2-y1)(x-y212p),即y1+y22py=…  相似文献   

14.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1 x2 p=2x p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1 x2/2.……  相似文献   

15.
曲线系方程所揭示的是一类曲线的共性。用曲线系解题,简洁而干脆。略举数例,以供参考。例1 设圆系方程x~2+y~2-2axcosθ-2bysinθ=0(a>0,b>0,a>b,a,b是定常数,θ是未定常数),求圆系中最大圆与最小圆公共弦的方程。解:对原方程配方:(x-acosθ)+ (y-bsinθ)~2=a~2cos~2θ+b~2sin~2θ,可知圆心轨迹方程为x~2/a~2+y~2/b~2=1,易知,最大圆方程:(x±a)~2+y~2=a~2,最小圆方程:x~2+(y±b)~2=b~2。得圆系方程;[(x±a)~2+y~2-a~2]+λ[x~2+(y±b)~2-b~2]=0。令λ=-1。便得所求的最大圆与最小圆的公共弦方程ax±by=0。  相似文献   

16.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

17.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

18.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

19.
结论 从圆O外一点P引圆的两条切线 PA、PB,切点分别为A、B,则切点弦AB被直线 OP垂直平分. 此结论可推广到椭圆、双曲线和抛物线. 1.从不在椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)对称轴 上的任意一点P引椭圆的两条切线PA、PB,切 点分别为A、B,则切点弦AB被直线OP平分,且 直线AB和OP的斜率之积为定值-(b2)/(a2).  相似文献   

20.
我们知道,若M(x,y)是线段AB的中点,且A为(x+u,y+ku),k为AB的斜率,则B的坐标为(x-u,y-hu),利用这种表达方法解一些有关中点的几何问题显得方便,兹举例如下: 例一:过点P(1,2)作椭圆x~2/(16)+y~2/9=1的弦AB,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号