首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex anthropometrics such as area and volume, can identify changes in body size and shape that are not detectable with traditional anthropometrics of lengths, breadths, skinfolds and girths. However, taking these complex with manual techniques (tape measurement and water displacement) is often unsuitable. Three-dimensional (3D) surface imaging systems are quick and accurate alternatives to manual techniques but their use is restricted by cost, complexity and limited access. We have developed a novel low-cost, accessible and portable 3D surface imaging system based on consumer depth cameras. The aim of this study was to determine the validity and repeatability of the system in the measurement of thigh volume. The thigh volumes of 36 participants were measured with the depth camera system and a high precision commercially available 3D surface imaging system (3dMD). The depth camera system used within this study is highly repeatable (technical error of measurement (TEM) of <1.0% intra-calibration and ~2.0% inter-calibration) but systematically overestimates (~6%) thigh volume when compared to the 3dMD system. This suggests poor agreement yet a close relationship, which once corrected can yield a usable thigh volume measurement.  相似文献   

2.
The purpose of this study was to assess the within- and between-session reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks performed by elite female handball and football (soccer) athletes. Moreover, we aimed at determining the minimum number of trials necessary to obtain a reliable measure. Nineteen elite female handball and 22 elite female football (soccer) athletes (M ± SD: 22 ± 4 yrs old, 168 ± 5 cm, 66 ± 8 kg) were tested. The reliability was quantified by intra-class correlations (ICCs), typical error and Spearman’s rank correlation. Only minor improvements in ICC values were seen when increasing the number of trials from 3 to 5. Based on trials 1–3, all variables showed good to excellent within-session reliability (M ICC: 0.91, 95% CI: 0.89–0.93), fair to good between-session reliability (M ICC: 0.73, 95% CI: 0.70–0.76), moderately positive between-session rank correlation coefficients (M: 0.72, 95% CI: 0.69–0.76). A few frontal plane biomechanical variables displayed lower between-session reliability in the football task compared with the handball task. The moderately positive between-session ranking and practically small typical error implies that the measurements could reliably reproduce the ranking of individuals in multiple-session studies. Adequate reliability could be attained from 3 trials, with only minor improvements when adding more trials.  相似文献   

3.
This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants’ feet. The velocity of the ‘body + lifted mass’ system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p < 0.05). Within sessions and between sessions, mean and peak forces during DHP showed a strong agreement (CV < 3%, ICC > 0.94), mean and peak velocities showed a good agreement (CV < 9%, 0.78 < ICC < 0.92). It was concluded that DHP performance and its force-velocity relationships are highly reliable and can therefore be utilised as a tool to characterise individuals’ muscular profiles.  相似文献   

4.
Although it is clear that rowers have a large muscle mass, their distribution of muscle mass and which of the main motions in rowing mediates muscle hypertrophy in each body part are unclear. We examine the relationships between partial motion power in rowing and muscle cross-sectional area of the thigh, lower back, and upper arms. Sixty young rowers (39 males and 21 females) participated in the study. Joint positions and forces were measured by video cameras and rowing ergometer software, respectively. One-dimensional motion analysis was performed to calculate the power of leg drive, trunk swing, and arm pull motions. Muscle cross-sectional areas were measured using magnetic resonance imaging. Multiple regression analyses were carried out to determine the association of different muscle cross-sectional areas with partial motion power. The anterior thigh best explained the power demonstrated by leg drive (r 2 = 0.508), the posterior thigh and lower back combined best explained the power demonstrated by the trunk swing (r 2 = 0.493), and the elbow extensors best explained the power demonstrated by the arm pull (r 2 = 0.195). Other correlations, such as arm muscles with leg drive power (r 2 = 0.424) and anterior thigh with trunk swing power (r 2 = 0.335), were also significant. All muscle cross-sectional areas were associated with rowing performance either through the production of power or by transmitting work. The results imply that rowing motion requires a well-balanced distribution of muscle mass throughout the body.  相似文献   

5.
Cost effective, quantifiable assessment of lower extremity movement represents potential improvement over standard tools for evaluation of injury risk. Ten healthy participants completed three trials of a drop jump, overhead squat, and single leg squat task. Peak hip and knee kinematics were assessed using an 8 camera BTS Smart 7000DX motion analysis system and the Microsoft Kinect® camera system. The agreement and consistency between both uncorrected and correct Kinect kinematic variables and the BTS camera system were assessed using interclass correlations coefficients. Peak sagittal plane kinematics measured using the Microsoft Kinect® camera system explained a significant amount of variance [Rangehip = 43.5–62.8%; Rangeknee = 67.5–89.6%] in peak kinematics measured using the BTS camera system. Across tasks, peak knee flexion angle and peak hip flexion were found to be consistent and in agreement when the Microsoft Kinect® camera system was directly compared to the BTS camera system but these values were improved following application of a corrective factor. The Microsoft Kinect® may not be an appropriate surrogate for traditional motion analysis technology, but it may have potential applications as a real-time feedback tool in pathological or high injury risk populations.  相似文献   

6.
Abstract

The aims of this study were to examine age and sex differences in elbow extensor and flexor anatomical muscle cross-sectional area (mCSA) measured by magnetic resonance imaging (MRI) and the location of maximal mCSA as a percentage of the distance from the distal to the proximal end of the humerus. Ninety-five individuals spread across the age groups 9 – 10 years, 16 – 17 years and 21 years participated in the study. Muscle cross-sectional area derived from the manual MRI tracing proved to be highly reliable in terms of limits of agreement (?2.5 to 1.5 cm2) and the intraclass correlation coefficient (ICC = 0.998). A sex-by-age group analysis of variance revealed significant effects (P < 0.01) of sex, group and a sex-by-group interaction, the latter reflecting a greater increase in males than females of upper arm mCSA from childhood to adulthood. Extensor mCSA was more proximal (55 ± 6%) than that of the flexors (28 ± 6%). A significant effect (P < 0.01) of group was found for location of maximal extensor mCSA, reflecting its more distal position with increasing age. Measurements of muscle size should be made at the individually determined position of maximal mCSA if interpreting data collected during growth and maturation, especially if the muscle group of interest is the elbow extensors and if different age groups are being monitored.  相似文献   

7.
We examined psychometric properties of a Modified Physical Activity Questionnaire for Children (MPAQ-C). Thirty-two parents (Study 1), 40 students (6–9 years) and one of each student’s parents (Study 2), and 625 parents (Study 3) completed the MPAQ-C. The MPAQ-C (six items) measured children’s physical activity (PA) after school, and during evenings and weekends for 7 days. Test–retest reliability (Study 1) and convergent validity (Study 2) were measured. Factor validity of the MPAQ-C (Study 3) was examined using confirmatory factor analysis. A single-factor model of the MPAQ-C fit the data well (χ2 (9) = 42.78, < .001; comparative fit index[CFI] = .977; non-normed fit index [NNFI] = .962; root mean square error of approximation [RMSEA] = .079 [90% confidence interval {CI} = .057 to .11]), with good test–retest reliability, composite reliability (.80) and convergent validity. The factor loadings of MPAQ-C were invariant across fathers/mothers (Δχ2 (6) = 3.44, > .05). The MPAQ-C is a suitable parent proxy for measuring young Chinese children’s PA.  相似文献   

8.
Abstract

There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS–accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS–accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h?1; CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.  相似文献   

9.
The Microsoft Xbox One Kinect? (Kinect V2) contains a depth camera that can be used to manually identify anatomical landmark positions in three-dimensions independent of the standard skeletal tracking, and therefore has potential for low-cost, time-efficient three-dimensional movement analysis (3DMA). This study examined inter-session reliability and concurrent validity of the Kinect V2 for the assessment of coronal and sagittal plane kinematics for the trunk, hip and knee during single leg squats (SLS) and drop vertical jumps (DVJ). Thirty young, healthy participants (age = 23 ± 5yrs, male/female = 15/15) performed a SLS and DVJ protocol that was recorded concurrently by the Kinect V2 and 3DMA during two sessions, one week apart. The Kinect V2 demonstrated good to excellent reliability for all SLS and DVJ variables (ICC ≥ 0.73). Concurrent validity ranged from poor to excellent (ICC = 0.02 to 0.98) during the SLS task, although trunk, hip and knee flexion and two-dimensional measures of knee abduction and frontal plane projection angle all demonstrated good to excellent validity (ICC ≥ 0.80). Concurrent validity for the DVJ task was typically worse, with only two variables exceeding ICC = 0.75 (trunk and hip flexion). These findings indicate that the Kinect V2 may have potential for large-scale screening for ACL injury risk, however future prospective research is required.  相似文献   

10.
Abstract

The aim of the study was to assess the reliability of a mobile contact mat in measuring a range of stretch–shortening cycle parameters in young adolescents. Additionally, vertical leg stiffness using contact mat data was validated against a criterion method using force–time data. The reliability study involved 18 youths completing a habituation and three separate test sessions, while 20 youths completed a single test session for the validity study. Participants completed three trials of a squat jump, countermovement jump, and maximal hopping test and a single trial of repeated sub-maximal hopping at 2.0 Hz and 2.5 Hz. All tests were performed on the contact mat. Reliability statistics included repeated-measures analysis of variance, intraclass correlation coefficient, and coefficient of variation (CV), while the correlation coefficient (r) and typical error of estimate (TEE) were reported for the validity study. Squat jump height was the most reliable measure (CV = 8.64%), while leg stiffness during sub-maximal hopping, and reactive strength index produced moderate reliability (CV = 10.17–13.93% and 13.98% respectively). Measures of leg stiffness obtained from contact mat data during sub-maximal hopping were in agreement with the criterion measure (r = 0.92–0.95; TEE = 6.5–7.5%), but not during maximal hopping (r = 0.59; TEE = 41.9%). The contact mat was deemed a valid tool for measuring stretch–shortening cycle ability in sub-maximal but not maximal hopping. Although reliability of performance was generally moderate, the tests offer a replicable assessment method for use with paediatric populations.  相似文献   

11.
This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.  相似文献   

12.
Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test–retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.  相似文献   

13.
Rowers need to combine high sprint and endurance capacities. Muscle morphology largely explains muscle power generating capacity, however, little is known on how muscle morphology relates to rowing performance measures. The aim was to determine how muscle morphology of the vastus lateralis relates to rowing ergometer performance, sprint and endurance capacity of Olympic rowers. Eighteen rowers (12♂, 6♀, who competed at 2016 Olympics) performed an incremental rowing test to obtain maximal oxygen consumption, reflecting endurance capacity. Sprint capacity was assessed by Wingate cycling peak power. M. vastus lateralis morphology (volume, physiological cross-sectional area, fascicle length and pennation angle) was derived from 3-dimensional ultrasound imaging. Thirteen rowers (7♂, 6♀) completed a 2000-m rowing ergometer time trial. Muscle volume largely explained variance in 2000-m rowing performance (R2 = 0.85), maximal oxygen consumption (R2 = 0.65), and Wingate peak power (R2 = 0.82). When normalized for differences in body size, maximal oxygen consumption and Wingate peak power were negatively related in males (r = ?0.94). Fascicle length, not physiological cross-sectional area, attributed to normalized peak power. In conclusion, vastus lateralis volume largely explains variance in rowing ergometer performance, sprint and endurance capacity. For a high normalized sprint capacity, athletes may benefit from long fascicles rather than a large physiological cross-sectional area.  相似文献   

14.
Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the relationship between finger flexor all-out test scores and climbing ability. Methods: To determine the effect of AF, 22 male climbers performed 2 maximal strength and all-out tests with AF (shoulder and elbow flexed at 90°) and without AF (shoulder flexed at 180° and elbow fully extended). To determine reliability, 9 male climbers completed 2 maximal strength tests with and without AF and an all-out and intermittent test without AF. Results: The maximal strength test without AF more strongly determined climbing ability than the test with AF (r2 = .48 and r2 = .42 for sport climbing; r2 = .66 and r2 = .42 for bouldering, respectively). Force and time variables were highly reliable; the rate of force development and fatigue index had moderate and low reliability. The maximal strength test with AF provided slightly higher reliability than without AF (intraclass correlation coefficient [ICC] = 0.94, ICC = 0.88, respectively). However, smaller maximal forces were achieved during AF (484 ± 112 N) than without AF (546 ± 132 N). All-out test average force had sufficiently high reliability (ICC = 0.92) and a relationship to sport climbing (r2 = .42) and bouldering ability (r2 = .58). Conclusion: Finger strength and endurance measurements provided sufficient construct validity evidence and high reliability for time and force parameters. Arm fixation provides more reliable results; however, the position without AF is recommended as it is more related to climbing ability.  相似文献   

15.
Abstract

The purpose of this study was to determine the validity and reliability of a new method for measuring three-dimensional (3D) putting stroke kinematics using the TOMI® device. A putting robot and a high-speed camera were used to simultaneously collect data for the validity evaluation. The TOMI® device, when used in conjunction with standard 3D coordinate data processing techniques, was found to be a valid and reliable method for measuring face angle, stroke path, putter speed, and impact spot at the moment of ball contact. The validity of the TOMI® measurement system was quantified using the 95% limits of agreement method for each aforementioned variable. The practical significance of each validity score was assessed by incorporating the maximum estimated measurement error into the stroke of the putting robot for 10 consecutive putts. All putts were executed from a distance of 4 m on a straight and flat synthetic putting surface. Since all putts were holed successfully, the measurement error for each variable was deemed to be negligible for the purposes of measuring putting stroke kinematics. The influence of key kinematic errors, at impact, on the outcome of a putt was also determined.  相似文献   

16.
Self-recall training diaries are a frequently used tool to quantify training load and training information. While accelerometers are predominantly used to validate training diaries, they are unable to validate contextual training information. Thus this study aimed to examine the novel use of data fusion from a wearable camera device (SenseCam) and accelerometer to validate a self-recall training diary. Thirty participants filled in a training diary for 1 day while simultaneously wearing a SenseCam and accelerometer. The training diary was validated using Bland–Altman plots, Spearman’s rank-order correlation, percentage agreement and κ measure of agreement between the diary and the SenseCam and accelerometer. The results demonstrated overall agreement, and no bias, between the training diary and the accelerometer for training intensity, and the SenseCam for duration of activity and travel time. A positive correlation was found for duration (r = 0.82, P < 0.001) and intensity (r = 0.67, P < 0.001). Hundred per cent agreement was found between the SenseCam and training diary for activity, training surface and footwear (κ = 1, P < 0.0001), with a lower agreement noted for sports played (97.3%, κ = 0.91, P < 0.0001). The self-recall training diary was found to be a valid measure of capturing training load and training information using the combined wearable camera device and accelerometer.  相似文献   

17.
Abstract

This prospective cohort study described return-to-play (RTP) data for different types of muscle injuries in male elite-level football players in Europe. Eighty-nine European professional teams were followed between 2001 and 2013. Team medical staff recorded individual player exposure and time-loss injuries. A total of 17,371 injuries occurred, including 5603 (32%) muscle injuries. From 2007, we received results from 386 magnetic resonance imaging (MRI) examinations, and radiological grading was performed. A negative MRI was associated with shorter recovery time (6 ± 7 days). Lay-off days were correlated with MRI grading of thigh muscle injuries (< 0.001). Among hamstring injuries, 83% occurred to the biceps femoris, 12% affected the semimembranosus and 5% the semitendinosus. Recurrence rate was higher among biceps femoris injuries (18%) compared with semitendinosus and semimembranosus injuries (2% together). Groin muscle injuries caused shorter median absence (9 days) than hamstring (13 days; < 0.001), quadriceps (12 days; < 0.001) and calf muscle (13 days; < 0.001) injuries. Overall, we found that MRI was valuable for prognosticating RTP, with radiological grading associated with lay-off times after injury. Re-injuries were common in biceps femoris injuries but rare in semitendinosus and semimembranosus injuries.  相似文献   

18.
Thigh muscle volume is a useful determinant of functional fitness. However, anthropometric prediction of muscle content is influenced by the variability of adipose tissue accumulation. The aims of this study were to predict thigh muscle and adipose tissue volumes from anthropometry and to assess the validity of the method by examining the various components of the measurements and the assumptions involved. The 19 participants (9 men, 10 women; age 23-49 years) varied in adiposity. They all underwent magnetic resonance imaging (MRI) of the upper leg and the eight men and two women with the lowest adiposity underwent detailed anthropometry involving girths and skinfolds. Using MRI as the reference method, muscle volume was predictedfrom anthropometry using a circular concentric model, and the assumptions inherent in the method were tested further using the MRI data alone. Muscle volume was best predicted by anthropometry in the 10 leanest participants using a five-slice truncated cone model that overestimated the mean MRI value by 30% (R2 = 0.95; standard error of estimate = 288 cm3; P < 0.001). A single skinfold plus girth measurement at the mid-thigh almost matched its predictive ability, but with an increased bias. Measurements of leg circumference by means of the two techniques agreed well. The assumption of a circular cross-section was valid. In contrast, the agreement between skinfold thickness measured by caliper and superficial adipose tissue thickness by MRI was poor, contributing to the scatter of fat and lean area comparisons. An anterior skinfold thickness measurement underestimated the area of superficial adipose tissue at that level, particularly at the most proximal and distal sites. Although these limitations increase the uncertainties of muscle volume determination by anthropometry, they do not prevent its valid prediction in leaner individuals. The prediction of superficial adipose tissue was poorer.  相似文献   

19.
Book reviews     
Thigh muscle volume is a useful determinant of functional fitness. However, anthropometric prediction of muscle content is influenced by the variability of adipose tissue accumulation. The aims of this study were to predict thigh muscle and adipose tissue volumes from anthropometry and to assess the validity of the method by examining the various components of the measurements and the assumptions involved. The 19 participants (9 men, 10 women; age 23-49 years) varied in adiposity. They all underwent magnetic resonance imaging (MRI) of the upper leg and the eight men and two women with the lowest adiposity underwent detailed anthropometry involving girths and skinfolds. Using MRI as the reference method, muscle volume was predicted from anthropometry using a circular concentric model, and the assumptions inherent in the method were tested further using the MRI data alone. Muscle volume was best predicted by anthropometry in the 10 leanest participants using a five-slice truncated cone model that overestimated the mean MRI value by 30% ( R 2 = 0.95; standard error of estimate = 288 cm 3 ; P ? 0.001). A single skinfold plus girth measurement at the mid-thigh almost matched its predictive ability, but with an increased bias. Measurements of leg circumference by means of the two techniques agreed well. The assumption of a circular cross-section was valid. In contrast, the agreement between skinfold thickness measured by caliper and superficial adipose tissue thickness by MRI was poor, contributing to the scatter of fat and lean area comparisons. An anterior skinfold thickness measurement underestimated the area of superficial adipose tissue at that level, particularly at the most proximal and distal sites. Although these limitations increase the uncertainties of muscle volume determination by anthropometry, they do not prevent its valid prediction in leaner individuals. The prediction of superficial adipose tissue was poorer.  相似文献   

20.
Little is known about the reliability, validity and smallest detectable differences of selected kinetic and temporal variables recorded by the Zebris FDM-THQ instrumented treadmill especially during running. Twenty male participants (age = 31.9 years (±5.6), height = 1.81 m (±0.08), mass = 80.2 kg (±9.5), body mass index = 24.53 kg/m2 (±2.53)) walked (5 km/h) and ran (10 and 15 km/h) on an instrumented treadmill, wearing running shoes fitted with Pedar-X insoles. A test-double retest protocol was conducted over two consecutive days. Maximal vertical force (Fmax), contact time (CT) and flight time (FT) data from 10 consecutive steps were collected. Within- and between-day reliability, smallest detectable differences (SDD) and validity (95% limits of agreement (LOA)) were calculated. ICC values for the Zebris for Fmax were acceptable (ICC ≥ 0.7) while CT and FT reliability indices were predominantly good (ICC ≥ 0.8) to excellent (ICC ≥ 0.9). The Zebris significantly underestimated Fmax when compared with the Pedar-X. The 95% LOA increased with speed. SDD ranged between 96 N and 169 N for Fmax, 0.017s and 0.055s for CT and 0.021s and 0.026s for FT. In conclusion, Zebris reliability was acceptable to excellent for the variables examined, but inferior in comparison with Pedar-X. With increased running speeds, a bias effect (underestimation) existed for the Zebris compared with Pedar-X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号