首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>安振平先生在《数学通报》2003年第5期上提出第1435号征解题,即[1]:设a、b>0,求证:(a/a+3b)[1]:设a、b>0,求证:(a/a+3b)(1/2)+(b/3a+b)(1/2)+(b/3a+b)(1/2)≥1.并在2003年第6期运用分拆法提供了一种巧妙的解法.安振平先生在《不等式探究》一书中又提出  相似文献   

2.
题目:已知函数f(x)满足f(x)=f’(1)ex-1-f(0)x+1/2x2.(1)求f(x)的解析式及单调区间;(2)若f(x)≥1/2x2+ax+b,求(a+1)b的最大值.此题为2012年全国高考数学新课标卷理科第21题,是一道利用函数、导数、不等式知识解决新问题的压轴题.第(1)小题较基础,相  相似文献   

3.
拆项求最值     
对于不能直接运用均值定理处理的"积定和最小"问题,一个有效的方法是拆项.结论对于函数f(x)=x+a2/x(x∈R+,a为正常数),设b为正常数.(1)若bmin =f(b);(2)若b≥a,则当x∈[b,+∞)时,[f(x)]min=f(b).证明f(x)=x+a2/x =(x+b2/x)+(a2-b2)/x.(1)若b相似文献   

4.
<正>商的算术平方根化成算式平方根的商是有条件限制的,即公式(a/b)(1/2)=a(1/2)=a(1/2)/b(1/2)/b(1/2)仅当a≥0,b>0时才能成立.往往有同学忽视公式成立的条件,请看下面两道题:例1已知x+y=3,xy=2.求(x/y)(1/2)仅当a≥0,b>0时才能成立.往往有同学忽视公式成立的条件,请看下面两道题:例1已知x+y=3,xy=2.求(x/y)(1/2)+(y/x)(1/2)+(y/x)(1/2)的值.例2已知x+y=-3,xy=2.求(x/y)(1/2)的值.例2已知x+y=-3,xy=2.求(x/y)(1/2)+(y/x)(1/2)+(y/x)(1/2)的值.这两题的结构相同,区別仅在于已知条件中两数和的符号相反,但是在解法上却是不一样的.  相似文献   

5.
<正>本文以2015年江苏高考数学卷第19题为例,对高考函数的常考问题进行探究,以总结出解决这类问题的有效思路与解法.一、试题呈现题目已知函数f(x)=x3+ax3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取  相似文献   

6.
贵刊2009年第4期擂题(98)如下: 设a,b,f,d,e>0,且a+b+c+d+e=1,λ≥0,证明或否定:对任意n≥2或n<0,有 an/1+λa2+bn/1+λb2+cn/1+λc2+dn/1+λd2+en/1+λe2≥53-n/25+λ (1)  相似文献   

7.
先证明对于任意正实数a,b都有a+b≥2(ab)1/2.证明:a,b都大于0,所以(a1/2-b1/2)2≥0,所以a-2(ab)1/2+b≥0,所以a+b≥2(ab)1/2.当a=b时,a+b=2(ab)1/2.  相似文献   

8.
<正>在求形如(A+B(1/2))(1/2))(1/3)+(A-B(1/3)+(A-B(1/2))(1/2))(1/3)(B≥0)的两个三次根式的代数和时,我们可把整个三次根式设为一个新变元,令x=(A+B(1/3)(B≥0)的两个三次根式的代数和时,我们可把整个三次根式设为一个新变元,令x=(A+B(1/2))(1/2))(1/3)+(A-B(1/3)+(A-B(1/2))(1/2))(1/3),然后利用两数和的立方公式:(a+b)(1/3),然后利用两数和的立方公式:(a+b)3=a3=a3+b3+b3+3ab(a+b)【此公式可通过(a+b)3+3ab(a+b)【此公式可通过(a+b)3=(a+b)3=(a+b)2(a+b)=(a2(a+b)=(a2+2ab+b2+2ab+b2)(a+b)求得.】将变换后的式子两边三次方,得到关于x的  相似文献   

9.
<正>2017年高考新课标Ⅱ文科第21题,题目虽不新颖,但是内涵丰富,引起了笔者的深入探索和思考.题目如下:设函数f(x)=(1-x2)e2)ex.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.1试题分析本题属于传统题,考查了函数的单调性和恒成立问题.以含参数不等式问题为载体,既考查学生的分类讨论思想、等价转化思想、数形结合思想和函数  相似文献   

10.
题目(2020泰国数学奥林匹克不等式)已知a,b,c∈R+,a+b+c=3,求证:a6/c2+2b3+b6a2+2c3+c6b2+2a3≥1(1)文[1]对(1)的证明方法,变式及推广做了探究,将(1)推广为。  相似文献   

11.
题目设a,b,c,d,e>0,证明:(bcde+acde+abde+abce+abcd)4≥125(a+b+c+d+e)(abcde)3.此题由湖南师范大学叶军老师提供.这个不等式证明很难,技巧性很强,不过有意思的是其一般形式的证明反而简单一些.本文将用数学归纳法将这个不等式推广到一般.  相似文献   

12.
<正>一、题目与错解题目已知函数f(x)=(x2-ax+a)e2-ax+a)ex-xx-x2,a∈R.若函数f(x)在x=0处取得极小值,求a的取值范围.这是高三数学复习导数的应用时,学生作业中的一道题目.由于经验型思维错误及思维不严谨,学生中出现了以下两种错解.错解1因为f'(x)=(x2,a∈R.若函数f(x)在x=0处取得极小值,求a的取值范围.这是高三数学复习导数的应用时,学生作业中的一道题目.由于经验型思维错误及思维不严谨,学生中出现了以下两种错解.错解1因为f'(x)=(x2-ax+2x)e2-ax+2x)ex-2x,而f(x)在x=0处取得极小值,于是  相似文献   

13.
题目(2010年四川省高考理科卷第22题)设f(x)=(1+ax)/(1-ax)(a>0且a≠1),g(x)是f(x)的反函数.(1)设关于x的方程loga t/((x2-1)(7-x))=g(x)在区间[2,6]上有实数解,求t的取值范围;(2)当a=e(e为自然对数的底数)时,证明:sum from k=2 to n g(k)>(2-n-n2)/(2n(n+1))1/2.(3)当0相似文献   

14.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0,  相似文献   

15.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

16.
<正>1两种解法都正确吗问题设函数f(x)=|lgx|,若a≠b,且f(a)=f(b),求a+b的取值范围.解法1由已知不妨设a1.因为f(a)=f(b),所以lga=lgb.所以-lga=lgb,lga+lgb=0.所以lgab=0,ab=1.所以a+b≥2(ab)(1/2)=21=2.因为a≠b,所以上式取不到"="号.所以a+b的取值范围为(2,+∞).反思这是很多数学参考资料中的解答.仔细思考这种解法严密吗?(a+b)取不到2就能得出(a+b)的取值范围为(2,+∞)吗?大于2的一切实数都能取得到吗?  相似文献   

17.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

18.
<正>证明不等式的方法有很多,有基本不等式法、函数法等.本文从一个独特的视角,采用全新的方法来证明不等式,即数形结合法,透过不等式的表面发现其几何意义,构造相应的几何图形来阐述不等式,将抽象问题具体化,直观化.题目设a>0,b>0,证明不等式2ab/(a+b)≤(ab)(1/2)≤(a+b)/2≤((a(1/2)≤(a+b)/2≤((a2+b2+b2)/2)2)/2)(1/2),当且仅当a=b时等号成立.思路这是2017年苏州市的一道高考模  相似文献   

19.
<正>2015年第6期《美国数学月刊》刊登了希腊人George Apostolopoulos提供的问题11868如下:问题11868[1]对非零实数a,b,c,设f(a,b,c)=(a[1]对非零实数a,b,c,设f(a,b,c)=(a2/a2/a2-ab+b2-ab+b2)2)(1/4),证明:f(a,b,c)+f(b,c,a)+f(c,a,b)≤3.文[2]给出了Leo Giuguic提供的解答.本文从  相似文献   

20.
<正>1试题呈现2017年高考全国Ⅱ卷文、理科第23题:已知a>0,b>0,a3+b3+b3=2,证明:(Ⅰ)(a+b)(a3=2,证明:(Ⅰ)(a+b)(a5+b5+b5)≥4;(Ⅱ)a+b≤2.这道试题难度不大,但值得我们去品味,通过对这道试题的探究和反思,得到了一些有意义的结论:一是两个不等式的多种证法,可谓精彩呈现;二是两个不等式的变式与推广,使我们对问题认识的更深  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号