首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
<正>初中数学教学中,经常会遇到直角坐标系中的三角形、四边形的面积问题.我们有:对角线互相垂直的四边形的面积等于这两条对角线乘积的一半.(证明略)菱形、正方形是这类四边形的特殊情况.高一学习钝角的三角函数及诱导公式后,对角线夹角为θ的四边形面积也可求:在四边形ABCD中,AC与BD的夹角为θ,则S四边形ABCD=1/2AC·BD·sinθ.(证明略)  相似文献   

2.
题1 已知:圆外切凸四边形ABCD外切于圆O(O为圆心),对角线AC与BD相交于点P,四个三角形PAB、PBC、PCD及PDA的内切圆圆心分别是I1、I2、I3及I4.已证明I1、I2、I3、I4四点共圆(I1、I2、I3、I4四点共圆等价于ABCD是圆的外切四边形),设此圆的圆心为M.求证:O、M、P三点共线的充要条件是:ABCD是一个筝形(即ABCD关于AC对称或关于BD对称)或一个圆的内接四边形.  相似文献   

3.
<正>题设ABCD是一个圆的内接凸四边形,对角线AC和BD相交于点X,则四边形ABCD存在落在∠A或∠C内部的旁切圆(在四边形的外部与四边形的四边所在的直线相切)的充要条件是BX=BD·sin2B/2.  相似文献   

4.
性质:对角线互相垂直的任意四边形性质的面积等于两条对角线乘积的一半.如图1:在四边形ABCD中,AC、BD是对角线,且AC⊥BD,垂足为P,则:四边形ABCD的面积=1/2AC×BD证明:因为AC⊥BD,所以S△ACD=1/2AC×DP,S△ACB=1/2AC×BP.因为四边形ABCD的面积=S△ACD+S△ACB.  相似文献   

5.
平行四边形具有对边相等、对角相等、对角线互相平分等性质.证明某些几何题时,若能巧妙地构造出平行四边形,就会化难为易、化繁为简,证明过程简捷. 现举例说明. 一、证两线段相等例1 已知:如图1,在四边形ABCD中,AB=DC, AD=BC,E、F在对角线AC上,且AE=CF. 求证:BE=DP.(河北省中考题) 证明:连结BD交AC于O,连结DE、BF. ∵AB=DC,AD=BC, ∴四边形ABCD是平行四边形.  相似文献   

6.
<正>1问题的提出在圆内接四边形ABCD中,记边长AB=a,BC=b,CD=c,DA=d,对角线AC=e,BD=f.著名的托勒密(Ptolemy)定理指出:圆内接四边形的两组对边乘积之和等于两条对角线长的乘积,即ac+bd=ef.一个十分自然而且重要的问题是:对于圆内接四边形ABCD的两组邻边乘积之和,也就是ab+cd和bc+ad,能否像托勒密定理那样分别找到两条线段m、  相似文献   

7.
邹明 《中等数学》2011,(12):13-17
第一题 如图1,P、Q分别是圆内接四边形ABCD的对角线AC、BD的中点.若∠BPA=∠DPA,证明:  相似文献   

8.
对角线互相垂直的四边形的面积等于它的两条对角线长的积的一半,下面我们证明这个结论。已知:四边形ABCD中,对角线AC⊥BD于E,如图1.求证:S四边形ABCD=1/2AC·BD.  相似文献   

9.
例如图1,AC,BD是四边形ABCD的对角线,若△ABC是等边三角形,∠ADC-30°,AD=3,BD=5,则CD的长为( )  相似文献   

10.
《数学奥林匹克中级读本(下)》(四川大学出版社出版,1991年10月第二版)一书中有这样一道例题(P75,例6): 如右图,设圆内接四边形ABCD的四边AB=a,BC=b,CD=c,DA=d,求对角线AC和BD的长(要求用a,b,c,d来表示)。书中在用余弦定理和圆内接四边形内对角之和为180°求出了两对角线之长后,有如下说明:“这例题用托勒密定理是不能求出圆内接四边形对角线的长。”然而我们说这说明是不正确的,用托勒密定理同样也能求出圆内接四边形的对角线长,现具体推理如下: 解法一:在弧ADC上取点M,使AM=CD=c,连MC,则△AMC≌△CDA(边、角、边),从而MC=AD=d,对圆内接四边形ABCD及  相似文献   

11.
本文借助于向量的数量积给出平面任意四边形的一组新面积公式,并举例介绍其应用.引理1对平面任意四边形ABCD,有SABCD=12AC·BD·sinα(其中,α是对角线AC、BD所成的角)图1证明:(1)如图1,若四边形ABCD是凸四边形,则SABCD=S△PAB S△PBC S△PCD S△PDA=12PA·PB·sin∠APB 12PB·  相似文献   

12.
<正> 本文将四边形的一个关于对角线互相垂直的定理及其部分应用介绍如下,供师生参考。 1 定理 在四边形ABCD中,如果AB~2+CD~2=AD~2+BC~2,那么AC⊥BD。 证一:如图1,若AC不垂直BD,设∠DMC>∠BMC,AC交BD于M,则由余弦定理和公式cos(180°-α)=-cosα得  相似文献   

13.
圆的垂径定理:垂直于弦的直径平分这条弦.这个定理有不少的应用.请看以下五例:例1如图1,已知AC、BD是⊙O的内接四边形ABCD的对角线,且BD垂直平分半径OC,在AC上取一点P使CP=OC,连结BP并延长交AD于点E,交⊙O于点F.求证PF是EF和BF的比例中项.(04年荆州市初数竞)  相似文献   

14.
邹明 《中等数学》2005,(5):19-19
题目 在凸四边形ABCD中,对角线BD既不是∠ABC的平分线,也不是∠CDA的平分线,点P在四边形ABCD内部,满足∠PBC=∠DBA和∠PDC=∠BDA.证明:四边形ABCD为圆内接四边形的充分必要条件是AP=CP。  相似文献   

15.
<正>考题再现例1 (2020·江苏·扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD,OD交于点E,F.(1)求证:OC?AD;(2)如图2,若DE=DF,求AE/AF的值;(3)当四边形ABCD的周长取最大值时,求DE/DF的值.  相似文献   

16.
高中《数学》第二册(上)P.88B组第2题:已知四边形一组对边的平方和等于另一组对边的平方和,求证它的对角线互相垂直.即如图1,在四边形ABCD中,若AB2 CD2=BC2 AD2,则AC⊥BD.  相似文献   

17.
赛题另解     
题1 如图1,在⊙O的内接四边形ABCD中,对角线AC、BD互相垂直,弧(ADC)的中点为M,过M、O、D三点的圆与DA、DC分别交于点E、F.证明:BE=BF.[1]。  相似文献   

18.
文 [1 ]的定理给出了余弦定理在四边形的一个推广 ,但该定理的题设是凸四边形 ,实际上 ,该定理可以推广到任意四边形 .定理 记四边形 ABCD(可以是凸的、凹的 ,也可以退化成三角形——即有一个角是平角的情形 )的四边长 AB=a,BC=b,CD= c,DA=d,两对角线长 AC=p,BD=q,则cos( B+ D) =( ac) 2 + ( bd) 2 - ( pq) 22 abcd .( A,B,C,D分别表示四边形 ABCD的相应内角 )证明 文 [1 ]已证出凸四边形的情形 ,该证明完全适合退化成三角形的情形 ,下面再证凹四边形的情形 (只证图 1的情形 ) .图 1在图 1中 ,AC与 BD的延长线交于点 O,∠ A…  相似文献   

19.
<正>一、通过四点共圆构建辅助圆例1在平行四边形ABCD中,BD是对角线,∠BDA=90°,点E是BD上的点,连接AE.(1)如图1(1),过点B做BF⊥AE,与AE的延长线交于点F,连接DF,求证∠DFA=∠DBA;(2)如图1(2),点P是线段AE上的点,∠EPB=45°,连接DP,如果AD=BD,AP=2,求△DPA的面积.  相似文献   

20.
托勒密定理是联系四边形和圆的一个重要定理。它是这样叙述的,圆内接四边形ABCD的两组对边乘积之和等于两对角线乘积。即: AC·BD=AB·CD AD·BC 通常证法是设法将①式左边分为两项,使与右边两项对应相等。 设在AC上取一点P,使AC=AP PC,代入①式左边得:AC·BD=AP·BD PC·BD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号