首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The aim of this study was to develop a performance test set-up for America's Cup grinders. The test set-up had to mimic the on-boat grinding activity and be capable of collecting data for analysis and evaluation of grinding performance. This study included a literature-based analysis of grinding demands and a test protocol developed to accommodate the necessary physiological loads. This study resulted in a test protocol consisting of 10 intervals of 20 revolutions each interspersed with active resting periods of 50 s. The 20 revolutions are a combination of both forward and backward grinding and an exponentially rising resistance. A custom-made grinding ergometer was developed with computer-controlled resistance and capable of collecting data during the test. The data collected can be used to find measures of grinding performance such as peak power, time to complete and the decline in repeated grinding performance.  相似文献   

2.
The stiffness measuring method for bicycle frames is not standardized, leading to a wide variety of test setups; they differ in many aspects such as applied load, support constraints and frame deflection measurement. The aim of this paper is to draw attention to this problem and to quantify the perturbing, unwanted side effects that influence the stiffness measurement of the bicycle frame. This is illustrated by developing a multi-purpose rating test method for bicycle frame stiffness. The proposed test rig design considers different aspects which should be taken into account when measuring the bicycle frame stiffness. In the experimental setup, it is observed that the contribution of the test bench compliance led to 21% difference in the frame stiffness results; the influence due to the head, the tube-bearing type the corresponding preload resulted in up to 19% difference in the stiffness results between the lowest and highest stiffness values measured; hysteresis effects caused by pulleys are estimated to introduce errors up to 11%; and the influence due to the operator variability and sensor accuracy is estimated to be less than 3%.  相似文献   

3.
Lower limb isometric strength is a key parameter to monitor the training process or recognise muscle weakness and injury risk. However, valid and reliable methods to evaluate it often require high-cost tools. The aim of this study was to analyse the concurrent validity and reliability of a low-cost digital dynamometer for measuring isometric strength in lower limb. Eleven physically active and healthy participants performed maximal isometric strength for: flexion and extension of ankle, flexion and extension of knee, flexion, extension, adduction, abduction, internal and external rotation of hip. Data obtained by the digital dynamometer were compared with the isokinetic dynamometer to examine its concurrent validity. Data obtained by the digital dynamometer from 2 different evaluators and 2 different sessions were compared to examine its inter-rater and intra-rater reliability. Intra-class correlation (ICC) for validity was excellent in every movement (ICC > 0.9). Intra and inter-tester reliability was excellent for all the movements assessed (ICC > 0.75). The low-cost digital dynamometer demonstrated strong concurrent validity and excellent intra and inter-tester reliability for assessing isometric strength in the main lower limb movements.  相似文献   

4.
ABSTRACT

The purpose of this study was to investigate the validity of a smartphone app to measure biomechanical barbell parameters during the snatch. Ten collegiate NCAA division I athletes performed two repetitions each at 40, 50, 60, 70, and 80% of their 1-repetition maximum snatch. Barbell motions were simultaneously recorded with a motion capture system and the smartphone app. The motion capture system recorded the 3-D position of a reflective marker attached to the end of the barbell while the smartphone app was used to record sagittal plane video and track the shape of the weight plate from which the barbell center was derived. Peak forward (PFD) and backward (PBD) displacements and peak vertical displacement (PVD) and velocity (PVV) were calculated from both sets of data. Significant, strong to very strong Pearson’s product-moment correlation coefficients between both systems were noted for all parameters (r = 0.729–0.902, all p < 0.001). Small significant biases between systems were observed for PVD (ES = 0.284, p < 0.001) and PFD (ES=0.340, p < 0.01), while trivial to small, non-significant biases were observed for PBD (ES = 0.143) and PVV (ES = –0.100). Collectively, the results suggest that the app can provide biomechanical data of barbell motions similar to a 3-D motion capture system.  相似文献   

5.
BackgroundPostural control has been associated with the functional impairment in persons with multiple sclerosis (pwMS). However, there is a need for reliable methods to assess postural control in early stages of the disease, when subtle changes can be difficult to detect. The aims of this study were to assess the absolute and relative reliability of a standing and a sitting posturographic protocol in minimally (Expanded Disability Status Scale ≤ 2) and moderately (2.5 ≤ Expanded Disability Status Scale ≤ 4) impaired pwMS, and to analyze relationships among postural control and functional mobility and gait performance.MethodsTo assess postural control in an upright stance, 14 minimally and 16 moderately impaired pwMS performed six 70 s trials in tandem stance, 3 with their weaker leg behind (TSWL) and 3 with their stronger leg behind (TSSL). Additionally, participants completed five 70 s trials using an unstable sitting protocol (US) to assess trunk stability. The mean radial errors of TSWL, TSSL, and US trials were calculated as postural control indexes. Furthermore, participants performed the Timed Up and Go test (TUG) and the Timed 25-foot Walk test (T25FW) to measure their functional mobility and gait speed, respectively. Reliability was evaluated using the intraclass correlation coefficient (ICC3,1) and the standard error of measurement (SEM). Analyses of variances were carried out to assess between-group differences. Hedges’ g index (dg) was used to estimate the effect size of differences. Pearson correlation analyses (r) were performed to examine the relationships among the postural control and the functional tests.ResultsPosturographic tests showed a high reliability in both minimally (0.87 ≤ ICC ≤ 0.92; 9.32% ≤ SEM ≤ 11.76%) and moderately (0.80 ≤ ICC ≤ 0.92; 10.33% ≤ SEM ≤ 15.33%) impaired pwMS. Similarly, T25FW and TUG displayed a high consistency in minimally (0.89 ≤ ICC ≤ 0.94; 3.43% ≤ SEM ≤ 5.17%) and moderately (0.85 ≤ ICC ≤ 0.93; 5.57% ≤ SEM ≤ 6.56%) impaired individuals. Minimally impaired pwMS showed a better performance on the TUG, T25FW, and TSWL than moderately impaired individuals (p < 0.05; dg ≥ 0.8). The TSWL, TSSL, and US variables correlated with TUG scores (0.419 ≤ r ≤ 0.604; p < 0.05), but TSWL also correlated with T25FW scores (r = 0.53; p < 0.01). Furthermore, US scores correlated with both tandem stance parameters (TSWL: r = 0.54, p < 0.01; TSSL: r = 0.43, p < 0.05).ConclusionTandem and sitting posturographic tests provide reliable measures of postural control in pwMS, even in individuals with a homogeneous disease profile. Gait speed, functional mobility, and weaker leg status seem decisive in assessing the degree of physical activity limitation in pwMS. Finally, although trunk stability does not seem to be so affected by the course of the disease, it remains relevant for postural control and functional capacity.  相似文献   

6.
The aim of this study was to assess the validity (Study 1) and reliability (Study 2) of a novel intermittent running test (Carminatti's test) for physiological assessment of soccer players. In Study 1, 28 players performed Carminatti's test, a repeated sprint ability test, and an intermittent treadmill test. In Study 2, 24 players performed Carminatti's test twice within 72 h to determine test-retest reliability. Carminatti's test required the participants to complete repeated bouts of 5 × 12 s shuttle running at progressively faster speeds until volitional exhaustion. The 12 s bouts were separated by 6 s recovery periods, making each stage 90 s in duration. The initial running distance was set at 15 m and was increased by 1 m at each stage (90 s). The repeated sprint ability test required the participants to perform 7 × 34.2 m maximal effort sprints separated by 25 s recovery. During the intermittent treadmill test, the initial velocity of 9.0 km · h(-1) was increased by 1.2 km · h(-1) every 3 min until volitional exhaustion. No significant difference (P > 0.05) was observed between Carminatti's test peak running velocity and speed at VO(2max) (v-VO(2max)). Peak running velocity in Carminatti's test was strongly correlated with v-VO(2max) (r = 0.74, P < 0.01), and highly associated with velocity at the onset of blood lactate accumulation (r = 0.63, P < 0.01). Mean sprint time was strongly associated with peak running velocity in Carminatti's test (r = -0.71, P < 0.01). The intraclass correlation was 0.94 with a coefficient of variation of 1.4%. In conclusion, Carminatti's test appears to be avalid and reliable measure of physical fitness and of the ability to perform intermittent high-intensity exercise in soccer players.  相似文献   

7.
Abstract

The aim of this study was to assess the validity (Study 1) and reliability (Study 2) of a novel intermittent running test (Carminatti's test) for physiological assessment of soccer players. In Study 1, 28 players performed Carminatti's test, a repeated sprint ability test, and an intermittent treadmill test. In Study 2, 24 players performed Carminatti's test twice within 72 h to determine test–retest reliability. Carminatti's test required the participants to complete repeated bouts of 5 × 12 s shuttle running at progressively faster speeds until volitional exhaustion. The 12 s bouts were separated by 6 s recovery periods, making each stage 90 s in duration. The initial running distance was set at 15 m and was increased by 1 m at each stage (90 s). The repeated sprint ability test required the participants to perform 7 × 34.2 m maximal effort sprints separated by 25 s recovery. During the intermittent treadmill test, the initial velocity of 9.0 km · h?1 was increased by 1.2 km · h?1 every 3 min until volitional exhaustion. No significant difference (P > 0.05) was observed between Carminatti's test peak running velocity and speed at VO2max (v-VO2max). Peak running velocity in Carminatti's test was strongly correlated with v-VO2max (r = 0.74, P < 0.01), and highly associated with velocity at the onset of blood lactate accumulation (r = 0.63, P < 0.01). Mean sprint time was strongly associated with peak running velocity in Carminatti's test (r = ?0.71, P < 0.01). The intraclass correlation was 0.94 with a coefficient of variation of 1.4%. In conclusion, Carminatti's test appears to be avalid and reliable measure of physical fitness and of the ability to perform intermittent high-intensity exercise in soccer players.  相似文献   

8.
The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation and Bland–Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland–Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (= 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.  相似文献   

9.
Abstract

The aim of the present study was to examine the effects of movement intensity and path linearity on global positioning system (GPS) distance validity and reliability. One participant wore eight 1-Hz GPS receivers while walking, jogging, running, and sprinting over linear and non-linear 200-m courses. Five trials were performed at each intensity of movement on each 200-m course. One receiver was excluded from analysis due to errors during data collection. The results from seven GPS receivers showed the mean (±s) and percent bias of the GPS distance values on the 200-m linear course were 205.8 ± 2.4 m (2.8%), 201.8 ± 2.8 m (0.8%), 203.1 ± 2.2 m (1.5%), and 205.2 ± 4 m (2.5%) for the walk, jog, run, and sprint trial respectively. Walk and sprint distances were significantly different from jogging and running distances (P < 0.05). The GPS distance values on the 200-m non-linear course were 198.9 ± 3.5 m (?0.5%), 188.3 ± 2 m (?5.8%), 184.6 ± 2.9 m (?7.7%), and 180.4 ± 5.7 m (?9.8%) for the walk, jog, run, and sprint trial respectively; these were significantly lower than those for the corresponding values on the linear course (P < 0.05). Differences between all non-linear movement intensities were significant (P < 0.05). The overall coefficient of variation within and between receivers was 2.6% and 2.8% respectively. Path linearity and movement intensity appear to affect GPS distance accuracy via inherent positioning errors, update rate, and conditions of use; reliability decreases with movement intensity.  相似文献   

10.
ABSTRACT

The aim of the present investigation was to analyze the validity and reliability of a novel iPhone app (CODTimer) for the measurement of total time and interlimb asymmetry in the 5 + 5 change of direction test (COD). To do so, twenty physically active adolescent athletes (age = 13.85 ± 1.34 years) performed six repetitions in the COD test while being measured with a pair of timing gates and CODTimer. A total of 120 COD times measured both with the timing gates and the app were then compared for validity and reliability purposes. There was an almost perfect correlation between the timing gates and the CODTimer app for the measurement of total time (r = 0.964; 95% Confidence interval (CI) = 0.95–1.00; Standard error of the estimate = 0.03 s.; p < 0.001). Moreover, non-significant, trivial differences were observed between devices for the measurement of total time and interlimb asymmetry (Effect size < 0.2, p > 0.05). Similar levels of reliability were observed between the timing gates and the app for the measurement of the 6 different trials of each participant (Timing gates: Intraclass correlation coefficient (ICC) = 0.651–0.747, Coefficient of variation (CV) = 2.6–3.5%; CODTimer: ICC = 0.671–0.840, CV = 2.2–3.2%). The results of the present study show that change of direction performance can be measured in a valid, reliable way using a novel iPhone app.  相似文献   

11.
Abstract

The aim of the current study was to investigate the validity and reliability of a radio frequency-based system for accurately tracking athlete movement within wheelchair court sports. Four wheelchair-specific tests were devised to assess the system during (i) static measurements; (ii) incremental fixed speeds; (iii) peak speeds; and (iv) multidirectional movements. During each test, three sampling frequencies (4, 8 and 16 Hz) were compared to a criterion method for distance, mean and peak speeds. Absolute static error remained between 0.19 and 0.32 m across the session. Distance values (test (ii)) showed greatest relative error in 4 Hz tags (1.3%), with significantly lower errors seen in higher frequency tags (<1.0%). Relative peak speed errors of <2.0% (test (iii)) were revealed across all sampling frequencies in relation to the criterion (4.00 ± 0.09 m · sˉ1). Results showed 8 and 16 Hz sampling frequencies displayed the closest-to-criterion values, whilst intra-tag reliability never exceeded 2.0% coefficient of variation (% CV) during peak speed detection. Minimal relative distance errors (<0.2%) were also seen across sampling frequencies (test (iv)). To conclude, the indoor tracking system is deemed an acceptable tool for tracking wheelchair court match play using a tag frequency of 8 or 16 Hz.  相似文献   

12.
In this study, we assessed the validity and reliability of 5 and 10 Hz global positioning systems (GPS) for measuring instantaneous velocity during acceleration, deceleration, and constant velocity while straight-line running. Three participants performed 80 running trials while wearing two GPS units each (5 Hz, V2.0 and 10 Hz, V4.0; MinimaxX, Catapult Innovations, Scoresby, VIC, Australia). The criterion measure used to assess GPS validity was instantaneous velocity recorded using a tripod-mounted laser. Validity was established using the standard error of the estimate (± 90% confidence limits). Reliability was determined using typical error (± 90% confidence limits, expressed as coefficient of variation) and Pearson's correlation. The 10 Hz GPS devices were two to three times more accurate than the 5 Hz devices when compared with a criterion value for instantaneous velocity during tasks completed at a range of velocities (coefficient of variation 3.1-11.3%). Similarly, the 10 Hz GPS units were up to six-fold more reliable for measuring instantaneous velocity than the 5 Hz units (coefficient of variation 1.9-6.0%). Newer GPS may provide an acceptable tool for the measurement of constant velocity, acceleration, and deceleration during straight-line running and have sufficient sensitivity for detecting changes in performance in team sport. However, researchers must account for the inherent match-to-match variation reported when using these devices.  相似文献   

13.
This study aimed to introduce a technique using computer-assisted image analysis for measuring body segmental angles during a static strength element on parallel bars. Criterion validity and intra-rater reliability of measurements were evaluated using digital photography, skin markers and a gravity-reference goniometer. Twenty male former gymnasts participated in this study. They performed a strength hold element on parallel bars (V-sit) and they were photographed with legs extended and stabilized at the highest possible level. The leg to horizontal, trunk to vertical and arm to vertical angles were calculated and examined for reliability using image-pro software. The leg angle was also examined for its validity, by simultaneously using a Myrin goniometer. The two goniometric techniques indicated high leg angle measurements agreement (R = 0.997, p < 0.001). However, Bland-Altman analysis showed that there was a slight leg angle measurement overrating using image-pro software, especially at smaller angles. The Intra-class Correlation Coefficient (ICC) values were high for leg angle (R = 0.971), trunk angle (R = 0.957) and arm angle (R = 0.945), showing an excellent test-retest agreement. It was ascertained that the measurement of segmental angles during V-sit on parallel bars using digital photography and computer-assisted image analysis can be highly reliable when taken by the same experienced examiner.  相似文献   

14.
Double-leg repeated jumping tasks are commonly used as measures of lower limb stiffness in exercise science research. Within similar stiffness calculations, variation in data-reduction criteria exists. The impact of these varied data-reduction methods on stiffness measures is unknown. Sixteen adolescent female participants from varied physical activity backgrounds performed 15 self-paced, bent-knee continuous jumps (CJb) on two force plates. Leg stiffness was calculated as the ratio of the peak force and the centre of mass displacement for each contact. Using combinations of criteria based on previous literature, 83 data-reduction methods were applied to the raw data. Data reduction suitability was assessed based on intra-trial reliability, the number of participants excluded and the average contacts excluded. Four data-reduction methods were deemed suitable for use with adolescent female populations, with three consecutive contacts within 1 SD of the average jump frequency considered optimal. The average individual stiffness values were not greatly influenced by the data-reduction method; however, for a single participant, a stiffness change of up to 6 kN · m?1 (30%) was observed. The role and potential impact of data-reduction methods used to evaluate measures of lower limb stiffness during repeated jumping tasks warrants consideration.  相似文献   

15.
The current study aimed to assess the validity and test–retest reliability of a linear position transducer when compared to a force plate through a counter-movement jump in female participants. Twenty-seven female recreational athletes (19 ± 2 years) performed three counter-movement jumps simultaneously using the linear position transducer and force plate for validity. In addition, 11 elite female athletes (23 ± 6 years) performed 3 counter-movement jumps with the linear position transducer on three separate days for test–retest reliability. Pearson correlations for jump height between the devices were at a high level (= .90), with the linear position transducer overestimating jump height by 7.0 ± 2.8 cm. The reliability measured by the linear position transducer resulted in a mean intraclass correlation of .70 for jump height, .90 for peak velocity, and .91 for mean velocity. The linear position transducer was reliable for measuring counter-movement jumps in elite female athletes; however, caution should be taken for one-off jump measures as it may over-estimate jump height.  相似文献   

16.
The purpose of this study was to analyse the validity and reliability of a novel iPhone app (named: PowerLift) for the measurement of mean velocity on the bench-press exercise. Additionally, the accuracy of the estimation of the 1-Repetition maximum (1RM) using the load–velocity relationship was tested. To do this, 10 powerlifters (Mean (SD): age = 26.5 ± 6.5 years; bench press 1RM · kg?1 = 1.34 ± 0.25) completed an incremental test on the bench-press exercise with 5 different loads (75–100% 1RM), while the mean velocity of the barbell was registered using a linear transducer (LT) and Powerlift. Results showed a very high correlation between the LT and the app (r = 0.94, SEE = 0.028 m · s?1) for the measurement of mean velocity. Bland–Altman plots (R2 = 0.011) and intraclass correlation coefficient (ICC = 0.965) revealed a very high agreement between both devices. A systematic bias by which the app registered slightly higher values than the LT (P < 0.05; mean difference (SD) between instruments = 0.008 ± 0.03 m · s?1). Finally, actual and estimated 1RM using the app were highly correlated (r = 0.98, mean difference (SD) = 5.5 ± 9.6 kg, P < 0.05). The app was found to be highly valid and reliable in comparison with a LT. These findings could have valuable practical applications for strength and conditioning coaches who wish to measure barbell velocity in the bench-press exercise.  相似文献   

17.
Biomechanical analyses using synchronized tools [electromyography (EMG), motion capture, force sensors, force platform, and digital camera] are classically performed in a laboratory environment that could influence the performance. We present a system for studying the running sprint start that synchronizes motion capture, EMG, and ground reaction force data. To maximize motion capture (Vicon 612 with six cameras), a special dim environment was created in the stadium. "Classical" tools were combined with "purpose-built" tools intended to analyse the different aspects of movement. For example, a synchronization system was built to create a common time-base for all data recordings and a portable EMG system was synchronized by a cable that was "disconnected" by the athlete's movement out of the blocks. This disconnection represented an independent event recorded by different tools. A "gap" was measured for some sprint start events between kinetic and kinematic (motion capture) data. Calibration results, measurements of time "gap", and duration of the independent event were used to validate the accuracy of motion capture and the synchronization system. The results validate the entire experimental set-up and suggest adjustment values for motion capture data. This environment can be used to study other movements and can easily be applied to several sports.  相似文献   

18.
19.
The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; VO2peak 61 ml x kg(-1) x min(-1), s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70% VO2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

20.
Abstract

The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; [Vdot]O2peak 61 ml · kg?1 · min?1, s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70%[Vdot]O2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号