首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A relatively simple, inexpensive and reliable technique was developed to fabricate an array of nanochannels. Moreover, the nanochannels are directly integrated to microchannels as a whole, which facilitates solution loading from the millimeter-scaled loading reservoirs into the nanochannels. It is found that continuous bovine serum albumin (BSA) line structures with triangle-like cross section at nanoscale can be obtained by evaporation of BSA solution with concentration between 0.5 wt. % and 1 wt. % inside the microchannels. The poly(dimethyl siloxane) nanochannels were replicated from these line structures, followed by sealing with the glass slide. The DNA molecules can be stretched inside the nanochannels as fabricated.  相似文献   

2.
It is known that the conductance of nanochannels as a function of electrolyte concentration deviates from a linearly proportional relationship and approaches a value independent of the concentration as the electrolyte concentration is lowered. Most of the proposed models account for this behavior by considering a constant surface charge density and an ideal electrolyte solution. However, at low electrolyte concentrations, the ideal electrolyte approximation is no longer valid because the ions that result from the atmospheric carbon dioxide dissolution in water dominate the ionic concentration. In this paper, arrays of silica nanochannels were electrically characterized via conductance measurements. The conductance at low salt concentrations is modeled by a variable surface charge model that accounts for all ionic species in solution. This model was used to determine the variable surface charge of the bare silica nanochannels as well as of chemically modified nanochannels. The model correctly predicted the variation of the nanochannel conductance observed after silane (aminopropyldimethylethoxysilane) functionalization and single-strand DNA immobilization. Finally, pH modification of bulk KCl solutions was employed as an alternative method of changing the surface charge of silica nanochannels. Surface charge calculated from conductance measurements performed at different bulk pH values confirmed that the surface charge of the silica nanochannel walls is sensitive to the H+ concentration.  相似文献   

3.
We report the profiling of the 5-methyl cytosine distribution within single genomic-sized DNA molecules at a gene-relevant resolution. This method linearizes and stretches DNA molecules by confinement to channels with a dimension of about 250×200 nm(2). The methylation state is detected using fluorescently labeled methyl-CpG binding domain proteins (MBD), with high signal contrast and low background. DNA barcodes consisting of methylated and non-methylated segments are generated, with both short and long concatemers demonstrating spatially resolved MBD binding. The resolution of the technique is better than 10 kbp, and single-molecule read-lengths exceeding 140 kbp have been achieved.  相似文献   

4.
We report the simultaneous mapping of multiple histone tail modifications on chromatin that has been confined to nanofluidic channels. In these channels, chromatin is elongated, and histone modification can be detected using fluorescently tagged monoclonal antibodies. Using reconstituted chromatin with three distinct histone sources and two histone tail modification probes (H3K4me3 and H3K9ac), we were able to distinguish chromatin from the different sources. Determined ratios of the two modifications were consistent with the bulk composition of histone mixtures. We determined that the major difficulty in transitioning the mapping method to site-specific profiling within single genomic molecules is the interference of naturally aggregating, off-the shelf antibodies with the internal structure of chromatin.  相似文献   

5.
Xie Q  Zhou Q  Xie F  Sang J  Wang W  Zhang HA  Wu W  Li Z 《Biomicrofluidics》2012,6(1):16502-165028
This paper introduced a wafer-scale fabrication approach for the preparation of nanochannels with high-aspect ratio (the ratio of the channel depth to its width). Edge lithography was used to pattern nanogaps in an aluminum film, which was functioned as deep reactive ion etching mask thereafter to form the nanochannel. Nanochannels with aspect ratio up to 172 and width down to 44 nm were successfully fabricated on a 4-inch Si wafer with width nonuniformity less than 13.6%. A microfluidic chip integrated with nanometer-sized filters was successfully fabricated by utilizing the present method for geometric-controllable nanoparticle packing.  相似文献   

6.
Planar nanochannels are fabricated using sacrificial etching technology with sacrificial cores consisting of aluminum, chromium, and germanium, with heights ranging from 18 to 98 nm. Transient filling via capillary action is compared against the Washburn equation [E. W. Washburn, Phys. Rev. 17, 273 (1921)], showing experimental filling speeds significantly lower than classical continuum theory predicts. Departure from theory is expressed in terms of a varying dynamic contact angle, reaching values as high as 83° in channels with heights of 18 nm. The dynamic contact angle varies significantly from the macroscopic contact angle and increases with decreasing channel dimensions.  相似文献   

7.
Using Monte Carlo simulations of a touching-bead model of double-stranded DNA, we show that DNA extension is enhanced in isosceles triangular nanochannels (relative to a circular nanochannel of the same effective size) due to entropic depletion in the channel corners. The extent of the enhanced extension depends non-monotonically on both the accessible area of the nanochannel and the apex angle of the triangle. We also develop a metric to quantify the extent of entropic depletion, thereby collapsing the extension data for circular, square, and various triangular nanochannels onto a single master curve for channel sizes in the transition between the Odijk and de Gennes regimes.  相似文献   

8.
In this review,we focus on the conined water that exists in one-dimensional micro/nano composite structures,particularly inside biological nanochannels.Using these nanochannels as inspiration,we discuss a strategy for the design and construction of biomimetic smart nanochannels.Unique features of the inner surfaces of a nanochannel’s wall have similar properties to living systems.Importantly,the abiotic analogs have potential applications in,for example,sensing,energy conversion and iltering.  相似文献   

9.
We investigate the fluctuation-relaxation dynamics of entropically restricted DNA molecules in square nanochannels ranging from 0.09 to 19.9 times the persistence length. In nanochannels smaller than the persistence length, the chain relaxation time is found to have cubic dependence on the channel size. It is found that the effective polymer width significantly alter the chain conformation and relaxation time in strong confinement. For thinner chains, looped chain configurations are found in channels with height comparable to the persistence length, with very slow relaxation compared to un-looped chains. Larger effective chain widths inhibit the formation of hairpin loops.  相似文献   

10.
There is currently a growing interest in control of stretching of DNA inside nanoconfined regions due to the possibility to analyze and manipulate single biomolecules for applications such as DNA mapping and barcoding, which are based on stretching the DNA in a linear fashion. In the present work, we couple Finite Element Methods and Monte Carlo simulations in order to study the conformation of DNA molecules confined in nanofluidic channels with neutral and charged walls. We find that the electrostatic forces become more and more important when lowering the ionic strength of the solution. The influence of the nanochannel cross section geometry is also studied by evaluating the DNA elongation in square, rectangular, and triangular channels. We demonstrate that coupling electrostatically interacting walls with a triangular geometry is an efficient way to stretch DNA molecules at the scale of hundreds of nanometers. The paper reports experimental observations of λ-DNA molecules in poly(dimethylsiloxane) nanochannels filled with solutions of different ionic strength. The results are in good agreement with the theoretical predictions, confirming the crucial role of the electrostatic repulsion of the constraining walls on the molecule stretching.  相似文献   

11.
We analyzed time-series data for fluctuations of intramolecular segments of barcoded E. coli genomic DNA molecules confined in nanochannels with sizes near the persistence length of DNA. These dynamic data allowed us to measure the probability distribution governing the distance between labels on the DNA backbone, which is a key input into the alignment methods used for genome mapping in nanochannels. Importantly, this dynamic method does not require alignment of the barcode to the reference genome, thereby removing a source of potential systematic error in a previous study of this type. The results thus obtained support previous evidence for a left-skewed probability density for the distance between labels, albeit at a lower magnitude of skewness. We further show that the majority of large fluctuations between labels are short-lived events, which sheds further light upon the success of the linearized DNA genome mapping technique. This time-resolved data analysis will improve existing genome map alignment algorithms, and the overall idea of using dynamic data could potentially improve the accuracy of genome mapping, especially for complex heterogeneous samples such as cancer cells.  相似文献   

12.
Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.  相似文献   

13.
The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating a high-endurance scale-up membrane-based generator system. We believe that this work provides useful insights into material design and fluid transport for the power generator in osmotic energy conversion.  相似文献   

14.
DNA分子的独特的双螺旋结构,使得DNA具有热力学上的稳定性、线性的分子结构及机械性等特征,是作为制备金属纳米线的理想模板。通过以DNA为模板形成金属纳米线,提高了DNA导电性,使得DNA分子作为纳米导线构筑纳米器件成为可能,在构筑生物纳米器件的领域会有广阔的应用前景。  相似文献   

15.
16.
17.
Fabrication of microfluidic devices using polydimethylsiloxane   总被引:1,自引:0,他引:1  
Polydimethylsiloxane (PDMS) is nearly ubiquitous in microfluidic devices, being easy to work with, economical, and transparent. A detailed protocol is provided here for using PDMS in the fabrication of microfluidic devices to aid those interested in using the material in their work, with information on the many potential ways the material may be used for novel devices.  相似文献   

18.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

19.
Materials of nanoscale size exhibit properties that macroscopic materials often do not have. The same holds for bubbles on the nanoscale: nanoscale gaseous domains on a solid-liquid interface have surprising properties. These include the shape, the long life time, and even superstability. Such so-called surface nanobubbles may have wide applications. This prospective article covers the basic properties of surface nanobubbles and gives several examples of potential nanobubble applications in nanomaterials and nanodevices. For example, nanobubbles can be used as templates or nanostructures in surface functionalization. The nanobubbles produced in situ in a microfluidic system can even induce an autonomous motion of the nanoparticles on which they form. Their formation also has implications for the fluid transport in narrow channels in which they form.  相似文献   

20.
许伦辉  薛强 《科技广场》2012,(7):129-132
本设计是一种基于单片机控制的自动循迹小车系统,研究了小车的功能结构,并对小车系统的软硬件设计进行了探究。寻迹小车采用光电传感器来识别白色路面中央的黑色引导线,选用AT89S52为控制芯片,通过红外发射和接收采集信号,并将该信号转换为被单片机识别的数字信号。另外,通过控制电机的转速及正反转可以实现小车前进、左转、右转等功能。智能小车的研究融入了机器人学、机电一体化技术、通讯与计算机技术、视觉与传感器技术、智能控制与决策等多学科的研究成果,反映出一个国家信息与自动化技术的综合实力。所以本论文对智能小车的研究意义重大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号