首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在几何解题中时常需要辅助线.在含有三角形中线条件的习题中倍长中线是一种重要的添加技巧,它可以将许多较为分散的条件相对集中,从而架设已知与未知的桥梁.现就倍长中线的方法举几例说明.例1如图1,△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.简析虽然AC、AB在同一个三角形中,但无法证得结论.想到BD=DC,即AD是中线,可倍长中线,即延长AD至E,使DE=AD,再连结BE,则易证得△BDE≌△CDA.于是∠E=∠CAD,BE=AC.而AD⊥AC,则∠E=90°.在Rt△AEB中,∠BAD=ABEDC图1CADEB图230°,所以BE=12AB,故AC=12AB.例2如图2,…  相似文献   

2.
例1 如图1,已知△ABC中,AD是BC边上的中线,且∠DAC>∠BAD。求证:AB>AC。分析∠DAC和∠BAD分散在两个不同的三角形中,不易看出它们之间的联系。若把中线AD加倍,即延长AD到E,使DE=AD,连结BE,则显然可证△BDE≌△CDA,于是∠E=∠DAC,  相似文献   

3.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

4.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

5.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

6.
1.利用三角形的边长关系 例1.AB为半圆直径,AC、AD指为半圆的满足∠BAC=∠CAD。 求证:AB+AD<2·AC。 简证:如图,显然有DC=BC,且知∠ADC与∠ABC互补。将△ABC绕着C旋转至△EDC位置,易证A、D、E共线,DE=AB,EC=AC。  相似文献   

7.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

8.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

9.
全等三角形的性质定理与判定定理是平面几何知识的基础,有着广泛的应用.有些几何图形虽然不是明显的全等三角形,但是可根据图形条件或结论的特点,通过平移或旋转来构造全等三角形,进而利用全等三角形的性质证得结论.一、将一部分图形平移,构造全等三角形证题例1如图1,已知在△ABC中,A D是BC边上的中线,E是A D上一点,BE=AC,BE的延长线交A C于F,求证:A F=EF.分析本题可通过作△AD C关于点D的对称△GD B,从而把证AF=EF,即∠FAE=∠A EF转化为证明∠G=∠BEG.证明作BG∥AC交A D的延长线于G,则△AD C≌△GD B.因为AC=BG,…  相似文献   

10.
图形分解法,即把一个复杂的几何图形分解成一些简单、易懂的图形,从而使问题容易得到解决。一、图形分解法在证明全等三角形中的运用在证明全等三角形时应抓住下列几种特殊图形:图1在图1中都隐含了一条件,即公共边、公共角、对顶角。图2例1已知:如图2,AB=AC,DB=DC,F是AD的延长线上的一点,求证:BF=CF·分析:把图2分解成下列简单的图形。由AB=AC、BD=CD、AD=AD得△ABD≌ACD即∠BAD=∠CAD。由可得AB△=AABCF≌、∠△BAACFF=,从∠而CABFF,A=FCF=得AF证。二、图形分解法在平行于三角形一边的直线的性质证明等积式和比…  相似文献   

11.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

12.
成果集锦     
直角三角形的一个充要条件黑龙江省绥化市北林区五中 王 航  定理 在△ABC中,CD平分∠C ,则∠C =90°的充要条件是1AD2 1BD2 =2CD2 .①证明:如图,作BE∥AC ,AF∥BC ,分别交CD的延长线于点E、F ,则有CDDE =ADDB =DFCD .若∠C =90°,则∠CBE =∠CAF =∠C =90°,∠BCE =∠ACF =45°,BC =BE ;AC =AF ,于是由DF =ADDB·CD知2AC2 =AC2 AF2 =CF2 =(CD ADDB·CD) 2 ,类似得 2BC2 =(CD DBAD·CD) 2 .以上两式相加,注意到AC2 BC2 =AB2 ,AD DB =AB ,即得2AB2 =CD2 ·AB2 ( 1AD2 1BD2 ) ,即…  相似文献   

13.
<正>一、三角形中线将原三角形面积分半.【例1】如图1,在三角形ABC中,BD是中线,AD=CD=12AC,BE⊥AC于E,即BE是△ABC的边AC上的高,同时BE也是△ABD高,也是钝角三角形BCD的高.解:根据三角形的面积公式,S△ABD、S△BCD的面积可  相似文献   

14.
一、知识要点1.相似三角形的定义、性质和判定.2.重心定理.3.应用相似三角形的判定、性质以及重心定理进行计算和论证.二、解题指导例1如图1,在△ABC中,D是AB上一点,∠DCA=∠ABC,AD=9cm,DB=3cm,求AC的长.(西安市,1993年)分析设AC=xcm,于是要求AC的长,只要根据已知条件和图形的性质列出关于X的方程即可.∠DCA=∠ABC,∠A公用,例2如图2,在△ABC中,AB=AC,AD是BC边上的高,BE是AC边上的中线,BE交AD于G,且AD=9cm,BE=m,求S△ABC分析要求S。。。,只要求出BC的长、由题设易知,*D一0已从而要…  相似文献   

15.
有些平面几何 ,本身虽然与面积无关 .若从面积的角度来考虑 ,往往具有思路明快 ,过程简捷 ,现举例如下 .一、用面积证明线段相等例 1 如图 1,在△ A BC中 ,BE⊥ AC于 E,CF⊥AB于 F,且 BE =CF,求证 :AB =A C.证明 :在△ A BC中 ,由三角形面积公式 ,得S△ ABC=12 A B .CF =12 A C .BE∵ BE =CF,∴ AB =AC.图 1图 2二、用面积法证明线段不等例 2 如图 2 ,在△ A BC中 ,BC >A C,AD⊥ BC于D,BE⊥ AC于 E,求证 :BE >A D.证明 :∵ S△ ABC =12 BE .A C =12 AD .BC,∴ BEA O=BCA C,又∵ BC >AC,∴ BE >AD .…  相似文献   

16.
一、直接寻求相关相似三角形例1从直角三角形ABC的斜边AB的中点D引AB的垂线,分别与AC和BC的延长线交于E、F点,求证:CD2=DE·DF.分析:要证CD2=DE·DF,即证CDDE=DFCD,对照图1,易看出只要证C、D、E三点和C、D、F三点分别对应的三角形相似即可,即证△CDE∽△CDF。为此,还需证另一对角相等,易知∠A=∠F,而∠A=∠ACD,所以,∠F=∠ECD,得证。二、先寻找相等线段,替换求证式中的一条或两条线段,再寻求相关相似三角形例2CD是△ABC的∠C的平分线,它的垂直平分线和AB的延长线相交于E点,求证:DE是AE和BE的比例中项。分析:D…  相似文献   

17.
一、利用定义求角例1已知四面体ABCD,AC⊥BD,且△ABC的面积为15,△ACD的面积为9.若AC=6,BD=7.求二面角B-AC-D的大小.解如图1,作BE⊥AC于E,连DE.∵AC⊥BD,AC⊥BE,∴AC⊥平面BDE,AC⊥DE.∴∠BED是二面角B-AC-D的平面角.∵S△ABC=15,S△ACD=9,AC=6,∴15=12×6×BE,则BE=5;9=21×6×DE,则DE=3.在△BDE中,由余弦定理可得cos∠BED=-21,故∠BED=120°.二、利用垂线求角例2如图2,正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.解过P作BD1及AD1的垂线,垂足分别是E,F,连EF.由于AB⊥平…  相似文献   

18.
勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须非要应用两者“联手”来解决不可,现略举几例说明.一、先用勾股定理再用其逆定理解题1.求证三角形中的某一个角是直角例1如图1,已知△ABC中,AD是BC边上中线,AB=AD=1,AC=5,求证∠BAD是直角.证明:作AE垂直BC于E.因为AB=AD=1,所以BE=ED.设ED=x,则BD=DC=2x,EC=3x,在Rt△AED中,由勾股定理得AE2=AD2-ED2=1-x2,同理在Rt△…  相似文献   

19.
一、填空题(每空2分,共34分):1.若直角三角形两直角边的长分别是6cm和8cm,则斜边长是________cm,斜边上的中线长是________cm.2.若三角形三内角度数的比是3:12:1,最小边的长是2cm,则最大边的长是________cm,最大边上的高是________cm.3.如果三角形的一边等于这边上。的中线的2倍,那么这个三角形是________三角形.4在ABCD中,若∠A=50°,∠B=,∠C=,∠D=.5.在ABCD中,对角线AC与BD相交于从若AC=30cm,BD=20cm,则OA=_______cm,OB=______cm.6在ABCD中,若AD:AB=1:2,周长为30cm,则AD=______cm,AB=…  相似文献   

20.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号