首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(a+b)/2≥ab1/2(a,b∈R+,当且仅当a=b时取"="号),(a+b)/2为a,b的算术平均数,ab1/2为a,b的几何平均数.此不等式即两个正数的算术平均数不小于它们的几何平均数的均值定理.应用均值定理时,需满足正(a,b均大于0)、定(a,b的和或积为定值)、等(a=b可以成立)三个条件.但是一些学生在应用解题时,常会出现貌似合理的解法,却造成矛盾或错误的结果等现象,究其原因,往往是对均值不等式中的"="的理解出现误区所致.实际上,均值不等式本身有其双重性.一方面,  相似文献   

2.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

3.
拆项求最值     
对于不能直接运用均值定理处理的"积定和最小"问题,一个有效的方法是拆项.结论对于函数f(x)=x+a2/x(x∈R+,a为正常数),设b为正常数.(1)若bmin =f(b);(2)若b≥a,则当x∈[b,+∞)时,[f(x)]min=f(b).证明f(x)=x+a2/x =(x+b2/x)+(a2-b2)/x.(1)若b相似文献   

4.
2011年爱沙尼亚国家队选拔考试第4题设a,b,c为正实数,满足2a2+b2=9c2,证明:(2c)/a+c/b≥31/2.侯典峰、郝明泉两位老师在文[1]中主要依据均值不等式,对该题给出了"三个简证".经过探求,笔者发现,借助权方和不等式证明该题,更显简洁.证明:由题设知a,b,c为正实数,满足2a2+b2  相似文献   

5.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

6.
题目已知a,b,c≥0,且a+b+c=1,求证(a+1/4(b-c)21/2+b1/2+c1/2≤31/2.(07年女子数学奥林匹克)分析所证不等式中(a+1/4(b-c)21/2的出现,给解题增加了难度.如果由此入手,寻找问题突破口,就会发现"(a+1/4(b-c)21/2"可以放大为"(a+1/2(b1/2-c1/2)2)1/2",从而用放缩法求  相似文献   

7.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

8.
先证明对于任意正实数a,b都有a+b≥2(ab)1/2.证明:a,b都大于0,所以(a1/2-b1/2)2≥0,所以a-2(ab)1/2+b≥0,所以a+b≥2(ab)1/2.当a=b时,a+b=2(ab)1/2.  相似文献   

9.
<正>在学习过程中,同学们会经常遇到不等式问题,经过归纳总结以及分析感悟,我觉得对于高中阶段的不等式问题,只要掌握了基本不等式的性质及解法,其他问题都会迎刃而解。1.基本不等式:(1)a,b∈R时,a2+b2+b2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2+b2+b2/2,当且仅当a=b时取等号。  相似文献   

10.
陕西安振平老师在文[1][2]两次提出了如下一个颇有难度的无理不等式猜想,即已知a,b,c为正实数,则(a2/(a2+26bc))1/3+(b2/(b2+26ac))1/3+(c2/(c2+26ab))1/3≥1.(1)笔者经过一年多研究发现这个猜想不等式是成立的,现给出证明.证明:设x=(bc)/(a2),y=(ac)/(b2),z=(ab)/(c2),则不等式(1)等价于下面命题,即x,y,z为正实数且xyz=1.则  相似文献   

11.
<正>证明不等式的方法有很多,有基本不等式法、函数法等.本文从一个独特的视角,采用全新的方法来证明不等式,即数形结合法,透过不等式的表面发现其几何意义,构造相应的几何图形来阐述不等式,将抽象问题具体化,直观化.题目设a>0,b>0,证明不等式2ab/(a+b)≤(ab)(1/2)≤(a+b)/2≤((a(1/2)≤(a+b)/2≤((a2+b2+b2)/2)2)/2)(1/2),当且仅当a=b时等号成立.思路这是2017年苏州市的一道高考模  相似文献   

12.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

13.
一、"整"化"零"的转换"整""零"转换是将所求问题的整体分解成若干个局部或将各个局部整合在一起,这样化难为易,最终目的还是化整为零.例1已知a、b∈R,求证(a2+b2)1/2+((2-a)2+b2)1/2+((1-a)2+((3)1/2-b)2)1/2>3.分析:根据两点间的距离公式,要证不等式的几何意义就  相似文献   

14.
1.会整体考虑例1已知a,b∈R+,且a+b=1,求(2a+1)1/2+(2b+1)1/2的最大值.分析整体考(2a+1)1/2和(2b+1)1/2,配成与条件相符合的式子.  相似文献   

15.
柯西不等式是由法国数学家柯西最早发现的,因而被命名为柯西不等式.由不等式2ab≤a2+b2,这里只要令a=a1b2,b=a2b1,便可得到,二维的柯西不等式为(a1b1+a2b22≤(a12+a22)(b12+b22),而等号成立时就是完全平方公式,这时a=b,也就是a1:a2=b1:b2.n维的柯西不等式为:设a1,a2,…,  相似文献   

16.
<正>定理若a,b,c,d都是实数,则(a2+b2+b2)(c2)(c2+d2+d2)≥(ac+bd)2)≥(ac+bd)2,当且仅当ad=bc时,等号成立。一、二维柯西不等式的课本证明证明:(人教A版31页)(代数法)展开这个乘积,整理得(a2,当且仅当ad=bc时,等号成立。一、二维柯西不等式的课本证明证明:(人教A版31页)(代数法)展开这个乘积,整理得(a2+b2+b2)(c2)(c2+d2+d2)=a2)=a2c2c2+b2+b2 d2 d2+a2+a2 d2 d2+b2+b2c2c2。由于a2。由于a2c2c2+b2+b2 d2 d2+a2+a2 d2 d2  相似文献   

17.
性质1设点P(m,n)是第一象限内的定点,直线l:x/a+y/b=1过点P(m,n),且截距a,b均大于零,则(1)当b/a=(n/m)1/2时,a+b有最小值m+n+ 2(mn)1/2;(2)当b/a=n/m时,ab有最小值4mn.  相似文献   

18.
题目证明:对于任意ΔABC,不等式a cos A+b cos B+c cos C≤p成立,其中a,b,c为ΔABC的三边,A,B,C分别为它们的对角,p为半周长.解法1:原不等式等价于a(1-2 cos A)+b(1-2 cos B)+c(1-2 cos C)≤0①.由余弦定理,不等式①等价于a4+b4+c4-2(a2b2+b2c2+a2c2)+a2bc+b2ca+c2ab≥0②.要证明②式,只需证明(a2+b2+c2)2-4(a2b2+b2c2+a2c2)+abc(a+b+c)≥0,即证明(a2+b2+c2)3-4(a2b2+b2c2+a2c2)(a2+b2+c2)+abc(a+b+c)(a2+b2+c2)≥0③.由均值不等式可得abc(a+b+c)(a2+b2+c2)≥abc·33 abc·33 a2b2c2=9a2b2c2.故要证③式,只需证(a2+b2+c2)3-4(a2b2+b2c2+a2c2)(a2+b2+c2)+9a2b2c2≥0④,由舒尔不等式可知④式显然成立,因此原不等式得证.  相似文献   

19.
b2=|b|2=(2n-3m)2=9m2-12m·n+4n2=9-12×1/2+4=7,∴|a|=71/2,|b|=71/2.又∵a·b(2m+n)·(2n-3m)=-6m2+m·n+2n2=-6+1/2+2=-31/2,∴cos〈a,b〉=(a·b)/(|a||b|)=(-31/2)/(71/2×71/2)=-1/2,∴向量a与向量b所成的角为120°.  相似文献   

20.
均值不等式(a+b)/2≥(ab)~(1/2)(a〉0,b〉0,当且仅当a=b时取"=")是一个重要的不等式,其在求解函数最值问题中有着广泛的应用,下面对均值不等式进行深层解析,供读者参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号