首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如图,AB和平面α所成的角是θ,,AC在平面α内,AC和AB的射影AB′,成角θ2.设∠BAC=θ,求证:cosθ1cosθ2=cosθ.  相似文献   

2.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

3.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

4.
如图1,直线AB和平面α所成的角是θ1,直线AC在平面α内,AC和AB的射影AB’所成的角为θ2,设∠BAC=θ,则cosθ1cosθ2=cosθ.此公式在新教材中列为了必学的内容,大大提高了其地位.下面举例谈谈它的应用.一、用于求直线与平面所成的角  相似文献   

5.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

6.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

7.
立体几何课本第117页有一道习题:如图1,AB和平面α所成角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ(1)。此题证明并不难,利用三垂线定理和直角三角形中的边角关系,即可证得。值得指出的是可以引导学生从这个等式中学到更多的东  相似文献   

8.
人教版高中数学第二册(下B)第43页在讲解直线和平面所成角时有如下结论:如图l所示,OA 和平面α所成的角是θ1,AC在平面α内,AC与OA 在平面α上的射影AB所成的角为θ2,设∠OAC= θ,则有cosθ=cosθ1·cosθ2(证明可参照课本).  相似文献   

9.
现行高中立几课本总复习参考题第3题为: 如图,AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ。如果把θ_1、θ_2、θ看作是以A为顶点的三个面角,该命题也可叙述为:在三面角中,如果两个面角所在平面互相垂直,那么这两个角的余弦之积等于第三个面角的  相似文献   

10.
下面三题都是高中《立体几何(必修)》教材中的习题. 题目1 如图,AB和平面α成的角是θ_1,AC在平面α内,AC和AB的射影AB′,所成角为θ_2,设么∠BAC=θ.求证: cosθ_1·cosθ_2=cosθ.(P.117第3题) 题目2 经过一个角的顶点引这个角所在的平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.  相似文献   

11.
立体几何中有一道习题 ,若用该题的结论来解课本中的其他习题 ,比常规解法显得简便得多 .先看该题 :题目 AB和平面α所成的角是θ1 ,AC在平面α内 ,AC和AB的射影AB′成角是θ2 ,设∠BAC =θ ,求证 :cosθ1 ·cosθ2 =cosθ .证明 如图 1 ,过AB上一点D向平面α作垂线DE ,垂足为E ,显然点E在直线AB′上 ,过E向AC作垂线EF ,垂足为F ,连结D、F ,根据三垂线定理 ,AC ⊥DF .在Rt△ADE中 ,cosθ1 =AEAD,在Rt△AEF中 ,cosθ2 =AFAE,在Rt△ADF中 ,cosθ =AFAD,∴cosθ1 ·cosθ2 =AEAD·AFAE =AFAD =cosθ.结论得证 .…  相似文献   

12.
在通用教材《立体几何》中有一道这样的习题:AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角是θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ。此命题的证明是不难的,因此本文略去。本题是一条很重要的结论,课本中的很多习题都可用本命题解出,用此法比常规解法(指教学参考书中给出的解答)  相似文献   

13.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

14.
公式的应用     
一、公式及其证明公式如图,AB和平面α所成的角是θ1,AC在平面α内,AC和AB的射影AB1成θ2,设∠BAC=θ,  相似文献   

15.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

16.
数学教学离不开例题教学 ,教师在教学中如能充分挖掘例题、习题中所隐含的数学思想方法 ,并有意识地进行长期渗透 ,使学生尽可能多地掌握住教材中某些例题、习题的重要结论 ,不仅可以扩充知识容量 ,增大思维跨度 ,还可以形成学生独立思考问题、科学解决问题的能力 .下面就高中课本中的一道立体几何习题为例 ,谈谈如何引导学生研究课本习题 ,培养学生分析问题和解决问题的创新能力 .问题 如图 1,AB和平面α所成的角是θ1,AC在平面α内 ,BB′⊥平面α于B′,AC和AB的射影AB′所成的角是θ2 ,设∠BAC =θ ,求证 :cosθ1·cosθ2 =cosθ …  相似文献   

17.
挖掘教材中某些例题和习题的命题背景或应用价值,是教学中重要的一环,它不但有助于学生开阔视野、灵活运用基础知识、丰富解题思路,而且将促进学生主动钻研教材寻找工具的能力。如统编教材数学高中第二册复习题五第九题为:(如图1)“AB和平面M所成的角是α,AC在平面M内,AC和AB在平面M内的射影AB′成角β,设∠BAC=θ,求证:cosθ=cosα·cosβ”。在学生完成了该命题的证明以后,我们考虑到关系式cosθ=cosα·cosβ所要求的条件在立几图形中存在较普遍,直接利用  相似文献   

18.
立几课本中第33页11题: 经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线. 立几课本中第122页第3题:AB和平面a所成角是θ1,AC在平面a内,AC和AB的射影AB'所成角θ2,设∠BAC=θ,求证:cosθ1·cosθ2=cosθ.(如图1)  相似文献   

19.
在教材中 ,不乏典型的基本图形 ,教学中如能加以研究 ,当能使知识的掌握更为牢固 ,方法的应用更加灵活 ,既能培养学生的探究创新能力 ,又能使学生享受到成功的喜悦 .下面举一例 ,加以说明 .1 基本图形的来源      图 1在新教材第 4 4页中 ,有如下内容 :如图 1,已知AO是平面α的斜线 ,A是斜足 ,OB垂直于α ,B为垂足 ,则直线AB是斜线AO在平面α内的射影 .设AC是α内的任一条直线 ,AC ⊥OC ,垂足为C ,又设AO与AB所成的角为θ1,AB与AC所成的角为θ2 ,AO与AC所成的角为θ ,经过推导得到 cosθ=cosθ1·cosθ2 .图 1中 ,三棱…  相似文献   

20.
充分利用课本中的习题,引导学生对习题中的条件和结论进行多变或引伸,或扩充,进而得出新的结论,能起到举一反三的效果。高中立体几何课本(甲种本)总复习参考题中有这样一道习题:“如图,AB和平面α所成的角是θ,AC在平面α内,AC和AB的射影AB’成角θ,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ.”这道题的证明并不困难,但其结论却是有用的。用这个  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号