首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全等三角形是解决初中数学中图形问题的重要的基础知识和工具.通过构造全等三角形,整合问题中隐含的解题信息,是常见的解题策略.本文以一道典型的求角度问题为例,从边入手,使解题需要的全等三角形自然生成.一、问题及解题困惑题目如图1,在△ABC中,AB=AC,∠CAB为钝角,延长AB到点D,延长CA到点E,连结DE,恰有AD=BC=CE=DE,求∠BAC的度数.  相似文献   

2.
<正>全等三角形是几何图形问题的重要基础知识和工具.构造全等三角形,聚焦整合问题中隐含的关键解题信息,是常见的重要解题策略.辅助线的添加是构造全等三角形的难点.本文从一道典型例题出发,说明怎样自然地选取目标三角形来添加辅助线.一、问题及解题困惑1、问题如图1,在△ABC中,AB=AC,∠CAB为钝角,延长AB到D,延长边CA到E,连结DE,恰有AD=BC=CE=DE,求∠BAC的度数.2、解题困惑(1)在刚弄清问题的已  相似文献   

3.
人教版2007.9在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系.现分类加以说明.一、延长中线构造全等三角形例1如图1,AD是△ABC的中线,求证:AB AC>2AD.证明:延长AD至E,使AD=DE,连接CE.如图2.∵AD是△ABC的中线,∴BD=CD.又∵∠1=∠2,AD=DE,∴△ABD≌  相似文献   

4.
在解几何题时,添加辅助线的目的是构造出新的几何图形,用来沟通条件与结论之间的联系,从而使问题获得解决.添加辅助线,构造全等三角形,是常用的证(解)题技巧.现举例如下. 例1 如图1,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.若BE=12,CF=5,求线段EF的长.(1997年黑龙江省中考试题)  相似文献   

5.
有些几何计算题,须先构造全等三角形才能计算出其结果。如图1,在ΔABC中,已知∠C=1/2∠B,AB=1/2BC,求∠A、∠B、∠C的度数。证作BD平分∠ABC交AC于点D,并作  相似文献   

6.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

7.
三角形是几何中的一种基本图形.解一些几何问题时,若能通过添加辅助线构造出全等三角形,就能使问题化难为易.那么,解题时应该如何构造全等三角形呢?一、已知中线若遇到中线,一般可将其延长一倍来构造全等三角形.例1如图1,在△ABC中,AD是中线,BE与AD交于点F,且AE=EF.试说明线段A  相似文献   

8.
全等三角形是研究平面几何的基础,它有着广泛的应用,虽然不少几何题在给定的图形中,无明显的三角形全等,但我们通过努力挖掘题设特征,合理添加辅助线,巧妙地构造三角形全等,仍会得到简便的证法,从而打开同学们的证题思路.例如: (l)如图:△ABC中AB=AC,分别过B、c做Bc的垂线,交过A点的任一直线于D、E. 求证:AD=AE.E 分析:欲证AD二AE,图中包含AD、AE的两个三角形显然不全等,我们以此为一对应边,抓住明显的BD//CE,思考延长BA交cE于F,构造出三角形全等. 证明:延长BA交CE于F.丫AB=AC.…乙1=乙2.:乙2十乙3二90“,…乙3=乙4,…AF=…  相似文献   

9.
<正>全等三角形的对应边相等、对应角相等,构造全等三角形可以实现线段和角的位置转移,从而为解决复杂的图形问题提供思路与方法.下面举例加以说明.一、求解线段长度在求解线段长时,如果题中条件比较分散, 可通过构造全等三角形实现线段或角的相对集中,从而促进问题的解决.例1 如图1,在正方形ABCD中,AD=5,点E、F是正方形ABCD外的两点,且AE=FC=3,BE=DF=4,则EF的长为___.解析延长EA、FD交于点M.  相似文献   

10.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

11.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

12.
<正>我们知道,正方形是特殊的平行四边形,它的四边相等,四个角都是直角.如果把它的边、角分别划分到适当的两个三角形中,再构造一对边或角的关系,就可以证明这两个三角形全等,进而证明相关的问题.一、延长线段构造全等三角形例1如图1所示,在正方形ABCD中,E、F是AD、DC上的点,且∠EBF=45°,求证:EF  相似文献   

13.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

14.
解答有关三角形的问题时,常常需要添加适当的辅助线.本文介绍三角形中5种常见辅助线的添加方法.一、延长中线构造全等三角形例1如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△AC D,得AC=A'B.这样将A  相似文献   

15.
学习知识的目的在于应用.下面我们将举例介绍全等三角形的性质(全等三角形的对应边相等,全等三角形的对应角相等)在以下几个方面的应用,供同学们参考. 一、证明两条直线平行 例1(2011重庆市中考试题)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC//EF.  相似文献   

16.
<正>一、平移全等模型例1如图1,点A,B,D,E在同一条直线上,AB=DE,AC//DF,BC//EF.求证:△ABC≌△DEF.解析:根据已知条件,利用“ASA”即可证出△ABC≌△DEF.∵AC//DF,∴∠CAB=∠FDE.∵BC//EF,∴∠CBA=∠FED.∵∠CAB=∠FDE,AB=DE,∠CBA=∠FED,∴△ABC≌△DEF(ASA).反思:可将图1看作是△ABC沿AB方向平移AD的长度得到的全等三角形模型.常见的平移全等三角形模型的呈现形式有图1、图2两种.  相似文献   

17.
能够完全重合的两个三角形是全等三角形,它们的对应元素分别相等.应用这个性质解某些数学竞赛题,有时是很方便的.一、比较线段的大小例1如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则().A.BE+CF>EFB.BE+CF=EFC.BE+CFFG,∴BE+…  相似文献   

18.
全等三角形及其应用因为涉及两个三角形的位置关系和数量关系,因此,解题时常会出错.就常见的错误,分类辨析如下."一、局部代替整体例1如图1,已知点A,E,F,D在同一直线上,且AE=DF,CE=BF,CE∥BF.试说明AB=CD.图1错解在△ABF和△DCE中,BF=CE,AE=DF.又CE∥BF,所以∠1=∠2.所以△ABF≌△DCE.所以AB=AD.辨析AE是AF的一部分,DF是DE的一部分,不能用局部相等来代替整体相等.正解在△ABF和△DCE中,BF=CE,因为AE=DF,EF=FE,所以AF=DE.又CE∥BF,所以∠1=∠2.所以△ABF≌△DCE.所以AB=CD.?二、虚假论据例2如图2,AC…  相似文献   

19.
正在初中数学中,常遇见一些需要添加辅助线构造全等三角形证题的题目.通过添加合适的辅助线构造全等三角形,从而在已知与结论之间架构桥梁,为题目的解决找到有效的途径.现将这类题型分类并结合实例加以说明,希望对这一类题目的教学提供启示.一、连接特殊图形的对角线构造全等三角形例如:已知如图1,AB=CD,AD=CB,求证:∠A=∠C.分析:由AB=CD、AD=CB可知四边形ABCD是平行四边形,所以连接对角线BD可以构造全等三角形.  相似文献   

20.
全等三角形是平面几何最重要的基础知识之一 ,利用全等三角形的性质可以直接证明线段或角相等 ,利用等线或等角代换进行转化 ,是解决其它问题的重要手段 ,因此 ,学会运用全等三角形证题是同学们必须掌握的技巧 ,在应用三角形全等来证题中一般有以下两种思路。思路一 已知图形中已知有全等三角形 ,挖掘条件证全等使问题得证。例 1 已知 ,如图 1 ,点C为线段AB上一点 ,△ACM和△CBN都是等边三角形 ,AN与CM交于点P ,CN交BM于点Q .图 1求证 :(1 )AN =BM ;(2 )CP =CQ .分析 :(1 )欲证AN =BM ,可设法证AN与BM所在的两个三角形全等…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号