首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated baseball pitching accuracy using a variety of parameters to quantify pitching errors and analysed the validity of the accuracy measurements by comparing the outcomes of two small groups of pitchers. Several professional (n = 5) and high school (n = 8) pitchers threw 30 pitches each, including 20 fastballs and 10 breaking balls. To assess pitching accuracy, pitch locations relative to the catcher’s mitt (as the target) were evaluated with various parameters, including major/minor radius, an area of 95% confidence ellipse, absolute error, constant error and pitch location trajectory. Compared to the high school pitchers, the professional pitchers exhibited shorter major and minor radii in their 20 fastball pitches (p < 0.05), more accurate control in the lateral direction (p < 0.05), and shorter pitch location trajectories (p < 0.05). The evaluation methods presented in this study can objectively assess pitching accuracy and may thus provide useful coaching feedback with visual information.  相似文献   

2.
This study investigated the contribution of flexor muscles to the forearm through fatigue; therefore, the differences in forearm mechanisms on the pitching motion in fastball were analysed. Fifteen baseball pitchers were included in this study. Ultrasonographical examination of participants’ ulnar nerve in the cubital tunnel with the elbow extended and at 45°, 90° and 120° of flexion was carried. A three-dimensional motion analysis system with 14 reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the flexor carpi ulnaris, flexor carpi radialis and extensor carpi radialis muscles of the dominant arm. Flexor carpi ulnaris muscle activity showed a significant difference during the acceleration phase, with a peak value during fastball post-fatigue (= 0.02). Significant differences in the distance between ulnar nerve and medial condyle on throwing arm and non-throwing arm were observed as the distance increased with the elbow movement from 0° to 120° of flexion (P = 0.01). The significant increase of the flexor carpi ulnaris muscle activity might be responsible for maintaining the stability of the wrist joint. The increased diameter might compress the ulnar nerve and cause several pathological changes. Therefore, fatigue in baseball pitchers still poses a threat to the ulnar nerve because the flexor carpi ulnaris and flexor carpi radialis all originate from the medial side of the elbow, and the swelling tendons after fatigue might be a key point.  相似文献   

3.
ABSTRACT

Conceptually, an efficient baseball pitch demonstrates a proximal-to-distal transfer of segmental angular velocity. Such a timing pattern (or kinematic sequence) reduces stress on musculoskeletal structures of the throwing arm and maximises ball velocity. We evaluated the variability of kinematic sequences in 208 baseball pitches. 3D biomechanical pitch analyses were performed on 8–10 fastball pitches from 22 baseball pitchers (5 high school, 11 collegiate and 6 professional). The kinematic sequence patterns – time of peak angular velocity of five body segments: pelvis, trunk, arm, forearm and hand – were measured. None of the pitches analysed demonstrated an entirely proximal-to-distal kinematic sequence. Fourteen different kinematic sequence patterns were demonstrated, with the most prevalent sequence being pelvis → trunk → arm → hand → forearm. Fewer than 10% of the pitchers performed only one kinematic sequence pattern across the sampled pitches. The variability of the kinematic sequence was similar in high-school pitchers and professionals. Previous studies report that deviation from the proximal-to-distal kinematic sequence is associated with increased injury risk. As a method of evaluating the efficient transfer of energy to the hand, the kinematic sequence may provide insight to injury risk in the future. The ideal kinematic sequence and ideal variability of the sequence when throwing have yet to be determined.  相似文献   

4.
The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, = 0.002) and at ball release (r = 0.536, = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.  相似文献   

5.
According to recent motor control studies, it is important to know probabilistic structure of his/her own motor errors to choose an optimal motor plan (i.e., where you aim at) to maximise the expected gain. In this study, we questioned if pitching form determines the probabilistic structure of pitching errors in baseball pitchers. Eighteen collegiate baseball pitchers with various pitching forms including right- and left-handed overarm, sidearm and underarm throwers threw 100 pitches aiming at a target located 90 cm above the ground. Two dimensional distribution of pitch location was fitted by using bivariate normal distribution and 95% confidence ellipse was calculated. In order to quantify the pitching form, the direction of the throwing arm trajectory in frontal plane was calculated. The direction of the long axis was dependent on each participant’s pitching form (e.g., right overarm pitchers pitched along a right-up–left-down ellipse and left overarm pitchers pitched along a left-up–right-down ellipse). This was confirmed by circular correlation analysis (P = 0.98). These results suggest that different mechanisms, potentially errors in pitching mechanics and errors in ball release timing, might contribute to errors along the long axis and those along the short axis.  相似文献   

6.
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P ? 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

7.
Kinematic comparisons of 1996 Olympic baseball pitchers   总被引:1,自引:0,他引:1  
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P < 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

8.
The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 ± 6°) and angular acceleration (11,600 ± 3,100 °/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 ± 9°) and angular acceleration (7,200 ± 2,800 °/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.  相似文献   

9.
Lower to upper extremity sequencing of energy and force is linked by virtue of the scapula. It was the purpose of this study to examine the relationship between passive hip rotational range of motion and scapular kinematics during baseball pitching. Nineteen youth baseball players (11.3 ± 0.6 years; 151.8 ± 8.8 cm; 45.9 ± 10.9 kg) with no history of injury participated. Bilateral hip passive rotational range of motion was measured pre and post pitching a simulated game. Scapular kinematics at the position of shoulder maximum external rotation during the pitching cycle were recorded in the first and last innings of the simulated game. Post simulated game, stance leg hip passive internal rotation revealed significant correlations (r = ?0.57, = 0.01) with scapula anterior/posterior tilt at the pitching event of maximum humeral external rotation. The current study reveals that pitching a simulated game results in alterations throughout the kinetic chain. Specifically, this study strengthens the notion that lumbopelvic-hip complex parameters play a significant role in shoulder motion. With this link identified, it is suggested that clinical focus be directed musculature about the lumbopelvic-hip complex as well as muscles that work to stabilise the scapula during dynamic movement.  相似文献   

10.
While 10% of the general population is left-handed, 27% of professional baseball pitchers are left-handed. Biomechanical differences between left- and right-handed college pitchers have been previously reported, but these differences have yet to be examined at the professional level. Therefore, the purpose of this study was to compare pitching biomechanics between left- and right-handed professional pitchers. It was hypothesised that there would be significant kinematic and kinetic differences between these two groups. Pitching biomechanics were collected on 96 left-handed pitchers and a group of 96 right-handed pitchers matched for age, height, mass and ball velocity. Student t-tests were used to identify kinematic and kinetic differences (p < 0.05). Of the 31 variables tested, only four were found to be significantly different between the groups. Landing position of the stride foot, trunk separation at foot contact, maximum shoulder external rotation and trunk forward tilt at ball release were all significantly greater in right-handed pitchers. The magnitude of the statistical differences found were small and not consistent with differences in the two previous, smaller studies. Thus, the differences found may be of minimal practical significance and mechanics can be taught the same to all pitchers, regardless of throwing hand.  相似文献   

11.
Left-handed baseball pitchers are thought to have a number of theoretical advantages compared to right-handed pitchers; however, there is limited scientific research detailing differences in the pitching mechanics of right- and left-handed pitchers. Therefore, this study sought to understand whether any kinematic and kinetic differences existed between right- and left-handed baseball pitchers. A total of 52 collegiate pitchers were included in this study; 26 left-handed pitchers were compared to 26 age-, height-, weight- and ball velocity-matched right-handed pitchers. Demographic information, passive shoulder range of motion and kinematic and kinetic data were obtained for each pitcher participating in the study. Results indicated that left-handed pitchers did not have a glenohumeral internal rotation deficit as compared to right-handed pitchers. Kinematic analysis indicated that elbow flexion, horizontal glenohumeral abduction and wrist coronal plane motion were significantly different between the two study cohorts. It was also noted that left-handed pitchers had increased elbow varus moments. The findings of this study suggest that pitching coaches should be aware that there are biomechanical differences between left- and right-handed pitchers.  相似文献   

12.
The objectives of this study were to investigate middle finger movements and dynamics of ball movements around the instant of ball release during baseball pitching. Baseball pitching from an indoor mound among 14 semi-professional pitchers was captured using a motion capture system with 16 high-speed cameras (1,000 Hz). Kinematics of middle finger joints, ball rotation, and force applied to the ball were calculated. The proximal and distal interphalangeal joints continued to extend until the instant of ball release, then abruptly flexed. The abrupt flexion lasted for only several milliseconds, followed by a short extension phase. The finger made a quick double cycle of extension-flexion movement, suggesting that it attained high stiffness resulting from co-contraction. The ball began to roll up to the tip of the finger 8 ± 1 ms before ball release owing to the start of extension or the increased angular velocity of extension for the proximal interphalangeal joint. A mean force of 195 ± 27 N was applied in the proximal direction of the hand at the same time as the beginning of ball rolling, and a mean force of 109 ± 22 N was applied to the throwing direction just before ball release.  相似文献   

13.
This study was conducted to determine whether a supination phase of the forearm exists around ball release (BRL), and, if present, to determine whether this supination is explained by a reaction force or by the body configuration required for this task. A 16-camera motion analysis system with a sampling frequency of 1,000 Hz recorded 20 healthy male semi-professional pitchers pitching from an indoor pitching mound. A short supination phase around BRL was confirmed for all participants in the current study. Correlation analyses revealed that the supination angle at BRL had significant relationships with several measurements of shoulder movement kinematics. Mechanical work analysis of the forearm’s longitudinal axis revealed several variations in joint power curve and various patterns of mechanical work among the participants, suggesting that a reaction force originating from accelerating a ball might not be the main cause of supination. The raw data also were down-sampled to a sampling frequency of 250 Hz, to match previous studies and to investigate the discrepancy among previous studies concerning the existence of the supination phase. The experience of participants and methodological differences, such as the definition of BRL and the time-normalisation technique, influenced whether the supination phase was observed.  相似文献   

14.
ABSTRACT

Knowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke. The highly skilled group had significantly (p < 0.05) larger forearm pronation/supination range-of-motion and wrist extension angles at impact than the less-skilled. The less-skilled group had a significantly more “open” racket face and slower racket velocities at impact than the highly skilled. Rates of shoulder internal rotation, forearm pronation, elbow extension and wrist flexion at impact were greater in the drive stroke than in the other strokes. The position of the racket at impact in the volley was significantly more anterior to the shoulder than in the other strokes, with a smaller trunk rotation angular velocity. Players used less shoulder internal/external rotation, forearm pronation/supination, elbow and wrist flexion/extension ranges-of-motions and angular velocities at impact in the drop stroke than in the other strokes. These findings provide useful insights into the technical differences that separate highly skilled from less-skilled players and provide a kinematic distinction between stroke types.  相似文献   

15.
It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (M ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional (3D) trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60–67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties.  相似文献   

16.
Recently, addition of a gymnastics glide kip to a standard pull-up (SPU) has resulted in the kipping pull-up (KPU). Changes in muscle activation and kinematics were evaluated with eleven athletes performing sets of 5 SPU and 5 KPU. Surface electromyography of upper body and lower body muscles was recorded along with movement kinematics obtained via markers and motion tracking software. Most kinematic variables were significantly higher in the KPU including (KPU minus SPU deg): Max hip angle (48.8° ± 6.8°, p < 0.001) and max knee angle (56.5° ± 11.3°, p < 0.001). The recruitment of core and lower body muscles was significantly higher in the KPU (% MVIC increase): rectus abdominis (28.7 ± 4.7%, p < 0.001), external oblique (21.8 ± 4.1%, p < 0.001), iliopsoas (26.1 ± 5.5%, p = 0.001) and tensor fasciae latae (13.5 ± 2.3%, p < 0.001). Correspondingly, the biceps brachii had lower activation in the KPU (% MVIC decrease): (26.7 ± 0.6%, p = 0.006). Depending on the athlete’s goal, they may elect to perform an SPU for higher upper body muscle activation; or the KPU for more full-body activation with the potential to perform more repetitions through reduced upper body fatigue.  相似文献   

17.
Controversy continues whether curveballs are stressful for young baseball pitchers. Furthermore, it is unproven whether professional baseball pitchers have fewer kinematic differences between fastballs and off-speed pitches than lower level pitchers. Kinematic and kinetic data were measured for 111 healthy baseball pitchers (26 youth, 21 high school, 20 collegiate, 26 minor league, and 18 major league level) throwing fastballs, curveballs, and change-ups in an indoor biomechanics laboratory with a high-speed, automated digitising system. Differences between pitch types and between competition levels were analysed with repeated measures ANOVA. Shoulder and elbow kinetics were greater in fastballs than in change-ups, while curveball kinetics were not different from the other two types of pitches. Kinematic angles at the instant of ball release varied between pitch types, while kinematic angles at the instant of lead foot contact varied between competition levels. There were no significant interactions between pitch type and competition level, meaning that kinetic and kinematic differences between pitch types did not vary by competition level. Like previous investigations, this study did not support the theory that curveballs are relatively more stressful for young pitchers. Although pitchers desire consistent kinematics, there were differences between pitch types, independent of competition level.  相似文献   

18.
By manipulating stimulus variation in terms of opponent pitcher actions, this study investigated the capability of expert (n = 30) and near-expert (n = 95) professional baseball batters to adapt anticipation skill when using the video simulation temporal occlusion paradigm. Participants watched in-game footage of two pitchers, one after the other, that was temporally occluded at ball release and various points during ball flight. They were required to make a written prediction of pitch types and locations. Per cent accuracy was calculated for pitch type, for pitch location, and for type and location combined. Results indicated that experts and near-experts could adapt their anticipation to predict above guessing level across both pitchers, but adaptation to the left-handed pitcher was poorer than the right-handed pitcher. Small-to-moderate effect sizes were found in terms of superior adaptation by experts over near-experts at the ball release and early ball flight occlusion conditions. The findings of this study extend theoretical and applied knowledge of expertise in striking sports. Practical application of the instruments and findings are discussed in terms of applied researchers, practitioners and high-performance staff in professional sporting organisations.  相似文献   

19.
Abstract

In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.  相似文献   

20.
Joint angles of the throwing limb were examined from the acceleration phase up until release for the sidearm throwing motion when using a flying disc. 17 individuals (ten skilled, seven unskilled) threw a disc as far as possible ten times. Throwing motions were recorded using three-dimensional high-speed videography. The initial condition of disc release and joint angle kinematics of the upper limb during the throwing motion were obtained. Mean ( ± standard deviation) throwing distance and disc spin rate were significantly greater for skilled throwers (51.4 ± 6.6 m, 12.9 ± 1.3 rps) than for unskilled throwers (29.5 ± 7.6 m, 9.4 ± 1.3 rps), although there was no significant difference in initial velocity of the disc between the two groups (skilled: 21.7 ± 1.7 m/s; unskilled: 20.7 ± 2.5 m/s). A marked difference in motion of supination/pronation of the forearm before disc release was identified, with the forearm supinated in the final acceleration phase leading up to disc release for the unskilled participants, while the forearm was pronated in the same phase for the skilled participants. These differences in joint kinematics could be related to differences in disc spin rate, and thus led to the substantial differences in throwing distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号