共查询到20条相似文献,搜索用时 0 毫秒
1.
我们知道,形如√a(a≥0)的式子叫做二次根式.从二次根式的定义得到,被开方数a是一个非负数,当然√也是一个非负数.这里的a可以是一个具体的数,也可以是一个式子,可以是一个单项式,也可以是一个多项式.利用二次根式的定义可以解决一些与根式相关的问题. 相似文献
2.
3.
形如的式子叫做二次根式.在此,我们必须特别注意二次根式定义中a≥0的限制条件.解一些与二次根式有关的数学问题时,灵活利用这一条件,可使问题的解答巧妙、简捷.例1在实数范围内化简(1993年缙云杯初中数学邀请赛初二试题)故原式(1993年吉林省初中数学竞赛试题)例3已知实数a满足,那么a-19922的值是()(A)1991;(B)1992;(C)1993;(D)1994.(1992年希望杯全国数学邀请赛初二试题)解∵a-1993≥0,∴a≥1993.∴1992-a<0.这时,已知等式化为∴a-1993=19922.∴a-19922=1993.故应选(C).例4设等式在实数范围内… 相似文献
4.
我们知道,形如、√a(a≥0)的式子叫做二次根式.从二次根式的定义得到,被开方数a是一个非负数,当然√a也是一个非负数. 相似文献
5.
形如(α≥0)的式子叫做二次根式.在此,我们要特别注意二次根式定义中被开方数的限制条件α≥0.对于一些与二次根式有关的问题,从被开方数入手,常可找到解题的捷径.例1在实数范围内,代数式的值为(A)1;(B)2;(C)3;(D)以上答案都不对.(1995年江苏省初中数学竞赛试题)解由-(X-4)~2≥0得(x-4)~2≤0.例2把的根号外面的因式移到根号内,则原式等于(1995年四川省初中数学联合竞赛试题)例3已知实数。满足那么的值是()(A)1991;(B)1992;(C)1993;(D)1994.(1992“希望杯”全国数学邀请赛初二试题)解由a… 相似文献
6.
<正>考点解读二次根式是初中数学“数与式”板块的重要内容.它是代数运算的基础,也是中考数学中的热门考点,常考查二次根式的非负性以及二次根式的化简与求值.二次根式具有双重非负性. 相似文献
7.
∫5是二次根式,那么2∫5是二次根式吗?绝大部分教师认为是.但笔者将2∫5与二次根式的定义相对照,感觉十分困惑.1二次根式和最简二次根式的定义及与其相悖的叙述 1.1二次根式的定义及相关定义教材[1]第2页如此给出二次根式的定义:“一般地, 相似文献
8.
10.
式子丫‘“(‘,多())叫做二次根式.理解二次根式的定义应注意三点: 1.“的取值范围是“多0. 2一以“多())是一个非负数. 3.(、a丫二‘才(‘,乡()).由(、a)J=‘之(‘z多;,),得到u一;、了“,了‘。一、‘,)·利用这个式子,可以把任何非负数写成一个数的平方的形式. 应用举例 例1.之一为介d值时,下列各式在实数范围内有意义了(1)、/_:一2 /—丁,。、,下牙不,,、工;\乙夕“一丈;、J ZV“一r上;‘任2\,,}解(,)要使、/万万厄有意义,则必须满足:一2)O,即当鑫乡2时了不下二毛有意义. (2)要使丫厄牙有意义,则必须满足一T妻。,即当.r簇。时厂二几.… 相似文献
11.
初二同学在学习《二次根式》一章时,对于某些题目,若能讲究解题策略,则可以简化解题过程,提高解题速度.现举例说明,供参考.一、联想定义,回归基础对于任何具体的数学知识来说,概念的定义带有某种“原始性”的特点,基于此,有不少题目用定义法去解非常简便.例1已知a、b为实数,且b=a2-2√+2-a2√a+2√,求1a+b的值解:由已知得a2-2≥0,2-a2≥0显然a2=2,a=±2√.由a+2√≠0,舍去a=-2√,取a=2√.代入得b=0.∴1=1=2√.∴a+b=2√=2.二、整体推进,简捷明快灵活把握题目的特点… 相似文献
12.
13.
二次根式是初中数学中较难掌握的一章.这部分知识中,概念多,各条性质成立的附加条件多且不同,题中的隐含条件不易发现.解题时如果审题不细,考虑不周,隐含条件挖掘不到位,常易陷入误区,导致解题失败.现摘选解题中容易出现的若干典型错误,分类加以诊断,以期引起注意,加以防范. 相似文献
14.
15.
16.
17.
一般地,式子(a≥0)叫做二次根式,因此(a≥0)是一个非负数.现巧妙运用二次根式的定义,解答一些竞赛题.一、若有意义,则a≥0.(1992年沈阳市“育才杯”初中数学竞赛题〕解由得二、若有意义,则a=0.例2在实数范围内,代数式(A)1.(B)2.(C)3.(D)以上答案都不对.(第10届江苏省初中数学竞赛题)解由得又故选A.三、若和均有意义,则a=0.例3已知x、y为实数,(1996年四川省初中数学联赛题)解由得(第四届“希望杯”全国初中数学竞赛题)巧用二次根式定义解竞赛题@孙罗超 相似文献
18.
在学习二次根式时,常常会出现概念不清、审题不严、运算不熟、方法不当等原因而错解题目,下面针对学生解题中出现的错误,分析错误产生的原因,阐述正确的解题方法,从而起到举一反三、触类旁通的作用。 相似文献
19.
同学们在解有关二次根式问题时,常常出现一些错误,主要表现在以下几个方面.1.结果未化成最简二次根式例1化简了“错解丫。+3一厅不丫a一卜人/—口V倪,、*,一~一/1一。~~_、‘一一一,、.~,.~,,_~一一万机输米甲\/万小足取间一伏很八,叫以驻琪化何,汁叫与子了石合并.正确结果为琴络巨、叮 DO臼2.错用运算律例’计算、厅/!六+六 —1错解犷6令})育十 1一丫匕二.不二十六}厅/六一2厅+3厅 分析将乘法对加法的分配律误用于除法.正确解法应先进行括号内的运算.正解丫万一{书生+书生{一、万、 \丫2丫3少V万+丫万 丫万 丫6丫万+丫万6(丫万一、厂牙).… 相似文献
20.
学习二次根式时,对于某些题目,若能讲究解题策略,则可以简化解题过程,提高解题速度,现举例说明。已知。"为实如如一牢率华李碑 相似文献