首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>例设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0,求a的取值范围.参考答案如下:(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)上单调减少,在(0,+∞)上单调增加.  相似文献   

2.
(2007年高考全国卷Ⅰ第20题)设函数f(x)=e~x-e~(-x)。(Ⅰ)证明:f(x)的导数f′(x)≥2; (Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围。命题者提供的参考答案:  相似文献   

3.
1.(2010年高考数学全国课标文科第21题)设函数f(x)=x(ex-1)-ax2.(Ⅰ)若a=12,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.2.(2012年高考数学湖南卷文科第22题)已知函数f(x)=ex-ax,其中a>0.  相似文献   

4.
<正>易错点1端点值处最易出错的三种情形1.一元二次不等式恒成立类问题例如:设(fx)=x2-2ax+2ax+2(a∈R),若当x∈R时,不等试f(x)≥a恒成立,求a的取值范围.分析:当x∈R时,f(x)≥a恒成立,即当x∈R时,x2-2ax+2-a≥0恒成立。∴△=4a2-4(2-a)≤0(易错为)△<0),所以-2≤a≤1。2.使用最值原理时的端点值问题例如:若k>13x3-4x当x∈(2,3)恒成立,求k的取值范围。分析:由导数分析可知,当x∈(2,3)时f(x)=13x3-4x单调递增,故k应大于f(x)的最大值,而由于  相似文献   

5.
一、求函数解析式【例1】设y=f(x)为三次函数,且图象关于原点对称,当x=1时,f(x)取得极小值-2,求f(x)的解析式.解:设f(x)=ax3 bx2 cx d(a≠0),由于其关于原点对称,为奇函数.故b=d=0.所以f(x)=ax3 cx,由f′(x)=3ax2 c,且x=1时,f(x)有极小值-2得f′(1)=3a c=0,f(1)=a c=-2,解之,得a=1,c=-3,所以f(x)=x3-3x.二、求函数单调区间与判断函数单调性【例2】求f(x)=x3 3x的单调区间.分析:首先确定f(x)的定义域,再在定义域上根据导函数f′(x)的符号来确定f(x)的单调区间.解:f(x)的定义域为(-∞,0)∪(0, ∞)f′(x)=3x2-3x2=3(x2 1)(x 1)(x-1)x2由于当x<-…  相似文献   

6.
函数在每年高考试题中都占有相当大的比重,从2004年高考题目中又可见到有拓宽函数命题领域的趋向.本文浅析高考函数命题的新趋势.一、三次函数闪亮登场由于导数的出现使三次函数问题呈现出新奇的亮点.【例1】已知函数f(x)=ax3-3x2-x-1在R上是减函数,求a的取值范围.解:由f(x)x∈R是减函数.故f′(x)=3ax2-6x-1<0当3ax2-6x-1<0]a<0且Δ=36 12a≤0∴a≤-3,即a∈(-∞,-3).【例2】已知函数f(x)=ax3 bx2-3x在x=±1处取得极值.(Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.解:(Ⅰ)f′(x)=3ax…  相似文献   

7.
一、导数与函数单调性相关问题例1已知a!R,求函数f(x)=x2eax的单调区间.解析函数f(x)的导函数f′(x)=2xeax ax2eax=(2x ax2)eax.(1)当a=0时,若x<0,则f′(x)<0;若x>0,则f′(x)>0.故当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0, ∞)内为增函数.(2)当a>0时,由2x ax2>0,解得  相似文献   

8.
<正>1试题呈现(2019年新课标全国卷Ⅰ文科第20题)已知函数f(x)=2sinx-xcosx-x,f′(x)是f(x)的导函数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π],f(x)≥ax,求a的取值范围.2试题解析与评析  相似文献   

9.
<正>例题已知函数f(x)=ax3-2ax+3a-4在区间(-1,1)上有唯一零点,求实数a的取值范围.这是中学数学教学2010年第二期数学园地里的一道题,作者找出了原来做法的错因并给出了正确的解法.解法如下:①当a=0时f(x)=-4,f(x)在(-1,1)上没有零点,所以a≠0.当a≠0时,f′(x)=3ax2-2a=a(3x2-2),令f′(x)=0得,x=±槡23,又f(-1)=4a-4,f(1)=2a-4,f-槡()23=27+4槡69a-4,f槡()23=27-4槡69a-4.②若a>0时,则当-1相似文献   

10.
<正>一、问题的提出题目设函数f(x)=e~x-e~(-x).(1)证明:f(x)的导数f'(x)≥2;(2)若对所有x≥0,都有f(x)≥ax,求a的取值范围.这是2007年全国Ⅰ卷理科20题,以此作为模考题,学生并不陌生.第(1)问容易解决,第(2)问很多学生选择分离参数法,具体过程如下:当x=0时,易见a可以取任意实数;当x>0时,a≤e~x-e~(-x)/x.  相似文献   

11.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

12.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

13.
纵观6年来数学新增内容(向量、导数、概率统计)高考命题走向是:函数与导数的整合,平面向量与解析几何的整合,空间向量与立体几何的整合,排列组合与概率的整合,形成了以向量、导数、概率为纽带的新的知识网络交汇点,且在试卷中所占分值有逐年递增之势,起点越来越高,难度越来越加大.本文以两年高考新课程卷试题做一例示.【例1】(2004年全国卷Ⅱ理科)已知a∈R,求函数f(x)=x2eax的单调区间.解析:函数f(x)的导数:f′(x)=2xeax ax2eax=(2x ax2)eax(Ⅰ)当a=0时,若x<0,则f′(x)<0,若x>0,则f′(x)>0所以当a=0时,函数f(x)在区间(-∞,0)内为减函数,在…  相似文献   

14.
1 试题及标准答案 题目 设函数f(x) =ax+cos x,x∈[0,π]. (I)讨论f(x)的单调性; (Ⅱ)设f(x)≤1+sin x,求a的取值范围. 标准答案(I)f1(x)=a-sin x. (i)当a≥1时,f1(x)≥0,且仅当a=1,x=π/2时,f1(x)=0,所以f(x)在[0,π]是增函数; (ii)当a≤0时,f1(x)≤0,且仅当a=0,x=0或x=π时,f1(x)=0,所以f(x)在[0,π]是减函数;  相似文献   

15.
12005年全国高考数学(Ⅲ)理科第(22)题题已知函数f(x)=4x-72-x,x∈[0,1].(1)求f(x)的单调区间和值域;(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使g(x0)=f(x1)成立,求a的取值范围.解(Ⅰ)求导求驻点知:f(x)在(0,12)是减函数;在(12,1)上是增函数.当x∈[0,1]时,f(x)值域为[-4,-3].(Ⅱ)g′(x)=3x2-3a2(a≥1)当x∈(0,1)时,g′(x)<0,g(x)是单调减函数.当x∈[0,1]时,g(x)∈[g(1),g(0)],即g(x)∈[1-2a-3a2,2a].又对于任x1∈[0,1]总存在x0∈[0,1]使g(x0)=f(x1)成立.所以由子集定义知:[-4,-3][1-2a-3a2,-2a]1-2a-3…  相似文献   

16.
问题:(2007年武汉市高三2月份调研考试数学理科第21题)已知函数 f(x)=x~2 2x aln x.(Ⅰ)若函数 f(x)在区间(0,1]上恒为单调函数,求实数 a 的取值范围;(Ⅱ)当t≥1时,不等式 f(2t-1)≥2f(t)-3恒成立,求实数 a 的取值范围.  相似文献   

17.
<正>例1(2010年高考全国卷I理科第20(2)题)已知函数f(x)=(x+1)lnx-x+1,证明:(x-1)f(x)≥0.证法1可得f′(x)=1x+lnx>0,(f′(x))′=x-1x2.进而可得f′(x)min=f′(1)=1>0,所以f(x)是增函数.当00;当x≥1时,得f(x)≥f(1)  相似文献   

18.
三次方程的根的个数,该如何求呢?利用导数,便可以解决.下面讨论:方程ax3 bx2 cx d=0(a>0)的根.分析:函数y=ax3 bx2 cx d的图象与x轴有几个交点,方程便有几个根.解:由题意得:f′(x)=3ax2 2bx c∵a>0∴y=f′(x)图象开口向上,且Δ=4b2-12ac(1)当Δ>0时,即4b2-12ac>0,b2>3ac时∴方程f′(x)=0有两个不同的实根,x1,x2不妨设x1x2时f′(x)>0,x1相似文献   

19.
1 困惑重重思错解 已知f(x)=aexInx+bex-1/x,曲线f(x)在点(1,f(x))处的切线为y=e(x-1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1. 原解:(Ⅰ)f(1)=2,f1(1)=e,解得a=1,b=2. (Ⅱ)f(x)=exInx+2ex1/x,f(x)>1(=)xInx>xe-x-2/e,设k(x)=xInx,则k'(x)=1+lnx,故k(x)min=k(1/e)=-1/e,h(x)=xex-1-2/e,则h'(x)=e-x(1-x),故h(x)max=h(1)=-1/e,所以:xlnx>xe-x-2/e(=)f(x)>1. 这是2014年高考新课标Ⅰ卷理科第21题,开学初,笔者把它介绍给学生.有一个学生提出了他的一个困惑,说第二问按他的方法怎么也做不出来.  相似文献   

20.
<正>1考情新动向题1(2018年高考全国3卷理科)已知函数f(x)=2(+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-10时,f(x)>0;⑵略.命题组给出的标准答案如下:(1)当a=0时,f(x)=2(+x)ln(1+x)-2x,f′(x)=ln(1+x)-x/1+x.设函数g(x)=f′(x)=ln(1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号