首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

2.
众所周知,如果两条曲线的方程是:f_1(x,y)=0和f_2(X,y)= 0,它们的交点是P(x_0,y_0),则方程f_1(x,y)+ λf_2(x,y)=0曲线是经过定点P的曲线系方程。利用或构造这个方程进行解题,可使某些问题的求  相似文献   

3.
全日制普通高级中学教科书(必修)《数学》第二册(上) P_(88)B 组4,即题目两条曲线 f_1(x,y)=0和 f_2(x,y)=0,它们的交点是 P(x_0,y_0),求证:方程f_1(x,y) λf_2(x,y)=0①的曲线也经过点 P(λ是任意实数).题目结论的证明很容易,此略.题目中,把条件放宽为二曲线 f_1(x,y)=0和 f_2(x,y)=0可以无交点,即方程组(?)②无实数解.  相似文献   

4.
金良 《中学教研》2002,(8):21-22
高中数学新教材(试验本)第二册(上)的第108页有一道习题: 两条曲线的方程是f(x,y)=0和f_2(x,y)=0,它们的交点是P(x_0,y_0),求证方程,f_1(x,y) λf_2(x,y)=0的曲线也过点P(λ是任意实数)。我们把上题所叙述的事实称为“过两已知曲线  相似文献   

5.
在处理直角坐标系xOy内的两点集 M={(x,y)|f(x,y)=0,x∈A,y∈B}, N={(x,y)|g(x,y)=0,x∈C,y∈D}的交集问题时,容易想到用代数的方法考虑方程组{f(x,y)=0 g(x,y)=0}在区域p={(x,y)|x∈A∩C,y∈B∩D}内是否有解的问题,要在平面子区域p内判断一个方程组是否有解,一般说来比在整个平面内判断要困难得多,然若能注意到两点集M、N的几何性质  相似文献   

6.
六年制重点中学高中数学课本《解析几何》中有不少习题,若应用下述结论将使解法大大简化。定理设两条曲线的方程是f_1(x,y)=0与f_2(x,y)=0,P(x_o,y_o)是它们的交点。则方程为f_1(x,y) λf_2(x,y)=0(λ是任意常数)的曲线也经过点P(x_o,y_o). 证明因为P(x_0,y_0)是f_1(x,y)=0  相似文献   

7.
曲线y=f(x)在点x0的导数f′(x0)就是曲线在该点的切线的斜率,本文对用导数几何意义求切线引起的误解进行剖析.已知曲线C:y=2x-x3,求过点A(1,1)的切线方程.(2005年全国高考卷Ⅲ文科15题改编)误解:显然点A(1,1)在曲线C:y=2x-x3上,f′(x)=2-3x2∴f′(1)=-1∴过点(1,1)的切线方程为:y-1=-1(x-1),即y=-x 2解析:由于点A(1,1)恰好在曲线y=f(x)上,因此容易得到一条切线方程,即以点A为切点的切线.但本题求的是“经过点A的切线”,而不是“在点A处的切线”,因而不排除有其他切线经过A.因此本题切线应有两条,一条以点A为切点,另一条不以点A为切点但…  相似文献   

8.
本文证明了命题:若圆锥曲线f_1(x,y)=0和f_2(x,y)=0的二次项系数相应相等且相交,则经过交点弦所在直线方程为f_1(x,y)-f_2(x,y)=0。从而推出命题:圆锥曲线f(x,y)=0被点M(m,n)所平分弦所在直线方程为f(x,y)-f(2m-x,2n-y)=0。并举例说明其应用。  相似文献   

9.
一、二曲线的和系定义1:在实数域内,设有二曲线 f_1(x、y)=0,f_2(x、y)=0,称曲线系mf_1(x、y)+nf_2(x、y)=0为曲线f_1、f_2的和系.m、n是不为0的实参数.令λ=n/m,则曲线f_1、f_2的和系可以写成: f_1(x、y)+λf_2(x、y)=0,当f_1=f_2时,规定λ≠—1。性质1:当二曲线f_1(x、y)=0与f_2(x、y)=0有公共点时,二曲线的和系f_1(x、y)+λf_2(x、y)=0为过f_1、f_2公共点的曲线系。性质2:除曲线f_1(x、y)=0与f_2(x、y)=0的公共点以外,二曲线的和系f_1(x、y)+λf_2(x、y)=0与曲线f_1或f_2没有其他的公共  相似文献   

10.
高中解析几何的研究对象是平面曲线的形状、位置和曲线与曲线之间的关系,而三角形是平面内最简单的几何图形,它的很多性质可以用来研究平面图形或平面曲线的几何性质,因此,解析几何与三角形有不解之缘.一、借助三角形的边、角等基本量的计算,来掌握解析几何中的位置关系的演绎【例1】在△ABC中BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B(1,2),求点A和点C的坐标.解:∵A点既在BC边的高线上,又在∠A的平分线上,联立y=0与x-2y+1=0,解得A(-1,0).于是kAB=2-01-(-1)=1,而x轴是∠A的平分线,∴kAC=-1,故AC所…  相似文献   

11.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

12.
解平面上两点集Q={(x,y)|f(x,y)=0}和R={(x,Y)|g(x,y)=0}的交集问题是高中数学中常见题型。这类问题叙述抽象,条件隐含,解题时对问题需要具体分析、加工和适当变换,把抽象问题转化为明确的数学问题或转化为利用直观图形的几何问题,就能找到简洁的解题途径。本文对这类问题的探讨谈几点看法。一、变换为利用几何图形的求解问题当题设中的点集表示直线和曲线时,可将它们的交集的求解问题转化为解直线和曲线的交点问题,由此来确定参数。例1 已知A={(x,y)|ax y=2},B={(x,y)|x ay=2},C={(x,y)|x~2 y~2=4},当  相似文献   

13.
概念: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点, 称方程f(x,y)=0为曲线C的方程.充分利用曲线与方程的关系,可简化问题的求解. 例1 过点P(-1,1),作直线与椭圆x2/4+y2/2=1交于A、B两点,若线段AB的中点恰  相似文献   

14.
我们知道,确定一条直线的方程,常用的方法有轨迹法和方程法即待定系数法.其中点斜式,两点式都是直线方程的特殊形式.本文着重谈谈求直线方程的非常规解法.1利用方程的同解原理求直线方程例1对于直线l上任意点(x,y),点(2x 4y,3x y)仍在直线l上,求直线l的方程.解因为x=y=0时,2x 4  相似文献   

15.
大家知道,如果方程f(x,y)=0表示平面内的一条曲线c,那么不等式f(x,y)>0和f(x,y)<0分别表示平面被曲线c分成的两个区域。换言之:点P(x,y)满足f(x,y)>0或f(x,y)<0,则点P(x,y)分别在曲线c分成的两个平面区域内。这一思想用于解题,有时颇有好处。举几例以作说明: 1 用以去绝对值符号 例1 △ABC三边所在直线方程为:AB:2x y-3-25((1/2)2)=0,BC:4x-3y-11 25((1/2)10)=0,AC:x 7y 5 50((1/2)5)=0,求△ABC的内切圆方程。 解 设所求内切圆的圆心I(a,b),半  相似文献   

16.
已知曲线间的位置关系,求曲线方程中参数满足的条件.这类习题在平面解析几何中常常遇到.现在就这类习题的解法,作以探讨. 如果已知曲线C_1:F(x,y,a)=0和曲线C_2:G(x,y)=0(其中a为参数),那么C_1和C_2的交点问题,归结为方程组F(x,y,a)=0 G(x,y)=0 有无实数解问题。利用方程组同解原理,得到与之同解的方程组{φ(x,a)=0 G(x,y)=0 (或者g(y,a)=0 G(x,y)=0). 这样一来,问题就转化为由φ(x,a)=0满足的条件,求参数a的问题.  相似文献   

17.
在平面解析几何中,我们经常遇到过两条曲线交点的曲线方程的问题。它有什么特征呢?现叙证如下: 性质1 若曲线l_1:f_1(x,y)=0与l_2:f_2(x,y)=0有交点为P_0(x_0,y_0),则曲线l_3:f_1(x,y)+λf_2(x,y)=0也经过交点P_0(x_0,y_0)其中λ为一切实数。  相似文献   

18.
王维斌  吉众 《新高考》2011,(Z1):57-59
一个点在平面上移动(也可以在空间移动,本文不作研究),它所通过的路径叫做这个点的轨迹,轨迹即点的集合.求轨迹方程(fx,y)=0和利用代数方法研究曲线(轨迹)的几何性质是解析几何的两个基本问题.这决定了求轨迹方程是解析几何中的一类重要问题.求轨迹方程的方法很多,当我们面对一个求轨迹方程问题时,该怎样思考?如何选择方法呢?首先,我们要弄清楚一个问题:求轨迹方程的任务是什么?求轨迹方程就是要写出动点的坐标x,y满足的方程.方程即等式,于是找等量关系是求轨迹方程最重要的任务.题设中一般并不给出动点的坐  相似文献   

19.
求轨迹方程问题是中学数学课重要内容之一,它在培养学生逻辑思维能力,分析问题解决问题的能力方面起着重要作用。所谓适合某条件的轨迹方程f(x,y)=0,要求:(1)凡适合条件的点的坐标(x,y)是方程f(x,y)=0的解.这时该方程对所求轨迹而言是完备的,也叫方程f(x,y)=0具有充分性。(2)凡是方程f(x,y)=0的解作为坐标(x,y)的点都适合该条件.这时该方程对所求轨迹而言是纯粹的,也叫方程f(x,y)=0具有必要性。在解求轨迹方程题时,是根据题目条件,运用解析法(直角坐标系或极坐标系)转化为二元方程f(x,y)=0。这个方程所表示的曲线是否是适合该条件的轨迹呢?本应就该方程的纯粹性和完备性加以证明。现行教材  相似文献   

20.
求一次函数y=kx+b(k≠0)与反比例函数y=k/x(k≠0),或一次函数Y=kx+b(k≠0)与二次函数y=ax^2(a≠0)的交点及原点围成的三角形面积时,通常取直线y=kx+b与y轴的交点到原点的距离作为这两个三角形的公共底边,此时,两个交点的横坐标的绝对值就是公共底边上的高线长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号