首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限。我们以液态NMR技术实现量子信息处理中的应用主题开展研究,所取得的成果包括:1)利用NMR实验实现了两个无直接耦合自旋之间的量子密集编码和三个量子位之间的量子密集编码过程。实验结果表明:量子密集编码只需传送N-1个量子位便可以传递N个经典位的信息。2)利用NMR实验实现了三种多量子算法;提出了一种实现n阶耦合变换的理论方法,根据这种方法可实现任意量子位的Deutsch-Jozsa算法。3)提出了一种基于量子克隆的量子编码和纠错方案。该方案一方面说明了量子克隆与量子纠错存在一定程度上的联系,另一方面也反映出一些量子克隆过程本身具有一定的抗消相干的能力。4)提出用二维NMR中的多量子相干实现无消相干子空间(DFS),并在实验上验证了该DFS的避错能力。本方法有效地利用了甲基中三个磁等价的氢核,把原本需要四个化学位移各不相同的核自旋构造的二逻辑位的DFS变成了只需两个化学位移各不相同的核自旋体系构造的二逻辑位的DFS,虽然用的核自旋数“更少”,却能避免更多的错误算符。用多量子相干作为量子计算中的量子位,是一种全新的概念,可以充分利用磁等价的原子核自旋来构造多个量子位,从而扩展了可利用的量子位的数目。  相似文献   

2.
This paper investigates the problem of observer-based decentralized control for a class of large-scale stochastic high-order feedforward systems with multi time delays. By using the homogeneous domination idea and constructing the implementable observer, the decentralized output-feedback controller design scheme is firstly proposed. Then, with the aid of stochastic time delay system stability theory, the globally asymptotically stable in probability of the closed-loop system is verified by selecting an appropriate Lyapunov–Krasoviskii functional. Finally, an example is provided to demonstrate the efficiency of the proposed design method.  相似文献   

3.
The observer-based feedback control for the two-level bilinear open stochastic quantum system is proposed in this paper. The state of open stochastic quantum system (OSQS) is described in the Cartesian coordinate system. The proposed state observer is designed by using state-dependent differential Riccati equation (SDDRE) and constructed for optimally estimating the state of OSQS from measurement output of the system. The state of observer is continuously updated by the output data of continuous weak measurement (CWM). A Lyapunov Feedback control is designed based on estimated state of the observer for the state transfer of OSQS. An exponential Lyapunov function is chosen to ensure the stability of the system. The observer-based Lyapunov feedback control (OLFC) strategy is developed according to the stochastic Lyapunov stability theorem. The numerical simulation results verify the achievability of the proposed OLFC strategy in terms of state estimation and state transfer of OSQS. Numerical simulations demonstrate that the observer tracks the state of system asymptotically with minimum error of ± 3%. The proposed OLFC has the ability to move the state of OSQS from arbitrary initial state to the final target eigenstate with high fidelity ≥ 90%.  相似文献   

4.
This paper studies event-triggered synchronization control problem for delayed neural networks with quantization and actuator saturation. Firstly, in order to reduce the load of network meanwhile retain required performance of system, the event-triggered scheme is adopted to determine if the sampled signal will be transmitted to the quantizer. Secondly, a synchronization error model is constructed to describe the master-slave synchronization system with event-triggered scheme, quantization and input saturation in a unified framework. Thirdly, on the basis of Lyapunov–Krasovskii functional, sufficient conditions for stabilization are derived which can ensure synchronization of the master system and slave system; particularly, a co-designed parameters of controller and the corresponding event-triggered parameters are obtained under the above stability condition. Lastly, two numerical examples are employed to illustrate the effectiveness of the proposed approach.  相似文献   

5.
In this paper, we mainly concentrate on the control issue of a variable length drilling riser under condition of unknown disturbances and output constraint. The studied flexible drilling riser system with variable length, variable tension, variable speed and restricted boundary output is essentially a nonlinear distributed parameter system. For achieving the vibration suppression and ensuring the boundary output within the constrained range, an appropriate control scheme with output signal barrier is put forward by integrating boundary control method, barrier Lyapunov function with finite-dimensional backstepping technique, where disturbance observer is employed for coping with the boundary disturbance. Moreover, the Lyapunov’s synthetic method is applied for the steadiness research of the studied flexible drilling riser system, and the simulations are presented to display the usefulness of proposed control scheme.  相似文献   

6.
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, ‘explosion of complexity’ of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.  相似文献   

7.
In this paper, the event-triggered decentralized control problem for interconnected nonlinear systems with input quantization is investigated. A state observer is constructed to estimate the unmeasurable states, and the state-dependent interconnections are accommodated by presenting some smooth functions. Then by employing backstepping technique and neural networks (NNs) approximation capability, a novel decentralized output feedback control strategy and an event-triggered mechanism are designed simultaneously. It is proved through Lyapunov theory that the closed-loop system is stable and the tracking property of all subsystems is guaranteed. Finally, the effectiveness of the proposed scheme is illustrated by an example.  相似文献   

8.
The global stabilization of a class of mixed states for finite dimensional stochastic quantum systems with degenerate measurement operator is investigated in this paper. We construct a measurement operator and control Hamiltonian that make the target state one of the system equilibria. Based on the proposed Lyapunov function, a control law is designed following Lyapunov’s method to steer system state to the target mixed state from an initial state in the convergence domain, which is obtained through the analyses of invariant set based on LaSella’s invariance principle. When the initial state isn’t in the convergence domain, a constant control is used to steer the system state so that it enters the convergence domain in finite time. The constant control and the control designed by Lyapunov method compose a switching control strategy, which can steer system state to the target mixed state from any arbitrary state in the state space, i.e., the target mixed state is globally stable under the switching control. The convergence of the switching control is proved based on state sample trajectories. Moreover, the numerical experiments on a three dimensional stochastic quantum system are performed to demonstrate the effectiveness of switching control.  相似文献   

9.
In this paper, we will investigate the necessary conditions, described by the Lyapunov matrix, for the robust exponential stability for a class of linear uncertain systems with a single constant delay and time-invariant parametric uncertainties, which are some generalizations of the existing results on uncertain linear time-delay systems. As a medium step, several pivotal properties of parameter-dependent Lyapunov matrix are proposed, which set up the relationships between fundamental matrix and Lyapunov matrix for the considered system. In addition, to calculate the parameter-dependent Lyapunov matrix, we introduce the differential equation method and the Lagrange interpolation method, respectively. Furthermore, it is noted that the proposed necessary conditions can be used to estimate the range of time delay, when the linear uncertain time-delay system is robust exponential stability. Finally, the validity of the obtained theoretical results is illustrated via numerical examples.  相似文献   

10.
In this paper, a constrained control scheme based on model reference adaptive control is investigated for the longitudinal motion of a commercial aircraft with actuator faults and saturation nonlinearities. Actuator faults and constraints are both important factors adversely affecting the stability and performance of flight control systems. An adaptive adjustment law based on Lyapunov function is utilized to adjust the fault-tolerant control law. Both additive and multiplicative faults are considered in the designed controller to deal with the three types of actuator faults: locked in place, loss of effectiveness, and bias. Moreover, different techniques are implemented in the basic and fault-tolerant controller to anti-windup. Proofs for the stability of the two modified controllers which improve the performance of control system operating in the presence of actuator faults and saturations are proposed. Finally, a numerical example of the anti-windup fault-tolerant controller for a commercial aircraft is demonstrated. The stability and performance improvements can be accrued with the presented fault-tolerant control scheme.  相似文献   

11.
This paper investigates the event-triggered control problem for networked control systems subject to deception attacks. An improved event-triggered scheme is proposed to reduce transmission rate by using both the information of the relative error and the past released signals. Under the proposed event-triggered scheme, a new switched time-delay system model is proposed for the event-triggered control systems. Based on the new model, the exponential mean-square stability criteria are derived by using the constructed Lyapunov function. Then, a co-design method is developed to obtain both trigger parameters and mode-dependent controller gains. Finally, the proposed scheme is verified by an unmanned aerial vehicle system.  相似文献   

12.
This paper mainly focuses on the adaptive synchronization problem of multi-agent systems via distributed impulsive control method. Different from the existing investigations of impulsive synchronization with fixed time impulsive inputs, the proposed distributed variable impulsive protocol allows that the impulsive inputs are chosen within a time period (namely impulsive time window) which can be described by the distances of the left (right) endpoints or the centers between two adjacent impulsive time windows. Obviously, this kind of flexible control scheme is more effective in practical systems (especially for the complex environment with physical restrictions). Moreover, the proposed adaptive control technique is helpful to solve the problem with uncertain system parameters. By means of Lyapunov stability theory, impulsive differential equations and adaptive control technique, three sufficient impulsive consensus conditions are given to realize the synchronization of a class of multi-agent nonlinear systems. Finally, two numerical simulations are provided to illustrate the validity of the theoretical analysis.  相似文献   

13.
This paper investigates the controller design problem of cyber-physical systems (CPSs) to ensure the reliability and security when actuator faults in physical layers and attacks in cyber layers occur simultaneously. The actuator faults are time-varying, which cover bias fault, outage, loss of effectiveness and stuck. Besides that, some state-dependent cyber attacks are launched in control input commands and system measurement data channels, which may lead state information to the opposite direction. A novel co-design controller scheme is constructed by adopting a new Lyapunov function, Nussbaum-type function, and direct adaptive technique, which may further relax the requirements of actuator/sensor attacks information. It is proven that the states of the closed-loop system asymptotically converge to zero even if actuator faults, actuator attacks and sensor attack are time-varying and co-existing. Finally, simulation results are presented to show the effectiveness of the proposed control method.  相似文献   

14.
The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.  相似文献   

15.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

16.
This paper addresses the state-feedback stabilization problem for a class of high-order uncertain nonlinear systems with multiple time-delays. The distinguished feature of the systems to be investigated is the serious coexistence between unknown time-varying parameters and unknown multiple time-delays. Time-varying method combined with adaptive technique is used to capture the possible unknowns and delayed states. The new control strategy is presented based on homogeneous domination idea and the choice of a Lyapunov–Krasovskii functional. Finally, the developed scheme is used to stabilize mass-spring mechanical system with unknown time-delays.  相似文献   

17.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

18.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

19.
《Journal of The Franklin Institute》2022,359(18):11229-11255
This paper deals with the design of a model-based rapid fault detection and isolation strategy using sliding mode observers. To address this problem, a new scheme is proposed by adaptively combining the information provided by a bank of observers. In this regard, a new structure for sliding mode observers is considered. Then, the well-known recursive least square algorithm is utilized to merge individual state estimations suitably such that the system fault is detected faster. The required condition for enhancing perfect state estimation is derived, and the stability of the overall system is proven via Lyapunov’s direct method. The supremacy of proposed scheme is fully discussed through mathematical analyses as well as simulations.  相似文献   

20.
This paper proposes an observer-based fuzzy adaptive output feedback control scheme for a class of uncertain single-input and single-output (SISO) nonlinear stochastic systems with quantized input signals and arbitrary switchings. The SISO system under consideration contains completely unknown nonlinear functions, unmeasured system states and quantized input signals quantized by a hysteretic quantizer. By adopting a new nonlinear disposal of the quantized input, the relationship between the control input and the quantized input is established. The hysteretic quantizer that we take can effectively avoid the chattering phenomena. Furthermore, the introduction of a linear observer makes the estimation of the states possible. Based on the universal approximation ability of the fuzzy logic systems (FLSs) and backstepping recursive design with the common stochastic Lyapunov function approach, a quantized output feedback control scheme is constructed, where the dynamic surface control (DSC) is explored to alleviate the computation burden. The proposed control scheme cannot only guarantee the boundedness of signals but also make the output of the system converge to a small neighborhood of the origin. The simulation results are exhibited to demonstrate the validity of the control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号