首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundPenthorum chinense Pursh (P. chinense) is a well-known traditional Chinese medicine (TCM) plant, which has long been used for the prevention and treatment of hepatic diseases. This study aimed to genetically characterize the varieties of P. chinense from different geographic localities of China by random amplification of polymorphic DNA (RAPD)-PCR technique and verified with inter-simple sequence repeat (ISSR) markers.ResultsThe P. chinense samples were collected from nine different geographic localities. Previously improved RAPD and ISSR markers were utilized for genetic analysis using DNA amplification. The genetic relationship dendrogram was obtained by conducting cluster analysis to the similarity coefficient of improved RAPD and ISSR markers. Improved RAPD yielded 185 scorable amplified products, of which 68.6% of the bands were polymorphic, with an average amplification of 9.25 bands per primer. The ISSR markers revealed 156 alleles with 7.8 bands per primers, where 59.7% bands were polymorphic. Furthermore, the similarity coefficient ranges of RAPD and ISSR markers were 0.71–0.91 and 0.66–0.89, respectively.ConclusionsThis study indicated that improved RAPD and ISSR methods are useful tools for evaluating the genetic diversity and characterizing P. chinense. Our findings can provide the theoretical basis for cultivar identification, standardization, and molecular-assisted breeding of P. chinense for medicinal use.  相似文献   

2.
BackgroundGenetic diversity and genetic variation of 10 populations and subpopulations of Magnolia wufengensis, a new and endangered endemic species, were examined by inter simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) molecular markers. Compared with other endangered endemic Magnolia taxa, M. wufengensis holds a relatively high level of genetic variation.ResultTotal genetic diversity was found to be 87.7% for ISSR and 88.0% for SRAP markers. For polymorphic loci (P), the effective mean number of alleles (Ae) was 1.414 for ISSR markers and 1.458 for SRAP markers, while the mean expected heterozygosity (H) was 0.256 using ISSR and 0.291 for SRAP markers. Within-population variation was estimated for P as 74.9% using ISSR and 74.6% with SRAP markers; the number of alleles Ae was 1.379 with ISSR and 1.397 for SRAP and H 0.235 with ISSR and 0.247 for SRAP markers.ConclusionThe analysis of molecular variation of both ISSR and SRAP marker systems indicated that most genetic variation is within populations, with values of 90.64% and 82.92% respectively. Mantel tests indicated a moderate association between the two marker systems and a low correlation between genetic and geographic distances. High levels of genetic diversity and low levels of population divergence suggest that genetic drift is not currently of great concern for this species. Severe habitat loss and fragmentation, predominantly ascribed to anthropogenic pressures, caused in-situ developing restriction of this species. Action for conserving this rare species for its long-term survival should be taken immediately.  相似文献   

3.
BackgroundAt present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservation genetics programs. In this study, genetic diversity parameters along with cluster analysis based on Jaccard's coefficient were estimated with the objective to assess the efficiency of Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP) and Inverse Sequence Tagged Repeat (ISTR) molecular DNA markers in the Dioscorea genus.ResultsThe polymorphic information contents were quite similar for all markers (≈ 0.48). Genetic variation of Dioscorea spp., in terms of average heterozygosity was lower with ISTR (0.36), and higher when other markers were used (RAPD = 0.43; ISSR = 0.45 and AFLP = 0.47).ConclusionThis indicates an important level of genetic differences despite the fact that the plant is asexually propagated. Based on the diversity statistics, any marker tested in present work can be recommended for use in large-scale genetic studies of populations. However, the low correlations among different molecular marker systems show the importance of the complementarity of the information that is generated by different markers for genetic studies involving estimation of polymorphism and relationships.  相似文献   

4.
BackgroundYacon (Smallanthus sonchifolius) is a root crop native to the Andean region. Low sexual reproductive capacity is a major constraint facing the genetic breeding of this crop. Biotechnological techniques offer alternative ways to widen genetic variability. We investigated somaclonal variation in regenerants of yacon derived from in vitro somatic embryogenesis using simple sequence repeat (ISSR) analysis and flow cytometry.ResultsTwenty tested ISSR primers provided a total of 7848 bands in 60 in vitro regenerants and control plant. The number of bands for each primer varied from 3 to 10, and an average of 6.95 bands was obtained per ISSR primer. Eight primers were polymorphic and generated 10 polymorphic bands with 7.19% mean polymorphism. ISSR analysis revealed genetic variability in 6 plants under study. These regenerants had Jaccard's distances 0.104, 0.020, 0.040, 0.106, 0.163 and 0.040. Flow cytometric analysis did not reveal changes of relative nuclear DNA content in regenerants suggesting that the plants obtained via somatic embryogenesis had maintained stable octoploid levels.ConclusionsOur findings show that indirect somatic embryogenesis could be used in yacon improvement to widen genetic variability, especially when low sexual reproductive capacity hinders classical ways of breeding.  相似文献   

5.
BackgroundSargassum liebmannii is widely distributed throughout rocky, coastal upwelling areas in the tropical Mexican Pacific. This brown algae is of great environmental and industrial importance. However, no information is available that documents the genetic or phenotypic variability of the species, which is needed to determine how it may react to environmental variation related to climate change. In this study, S. liebmannii specimens were collected from the coast of Jalisco, Mexico, and molecular and morphological characterization was conducted. Intraspecific variability was estimated according to the study areas.ResultsThe inter-simple sequence repeat (ISSR) markers indicated a polymorphism percentage of 95%. The Shannon index and Nei index showed relatively low values among the populations (0.3569 and 0.081, respectively). On the other hand, the genetic differentiation coefficient indicated inter- and intrapopulation values of 36.69% and 63.31%, respectively. The Jaccard similarity coefficient was used to determine the degree of similarity among individuals by geographical area. The morphological characteristics and environmental variables that were used to correlate phenotypes and genotypes indicated that S. liebmannii showed low genetic flow because of the presence of geographical barriers due to substrate that was not optimal for algal development.ConclusionsThe ISSR markers were useful for detecting genetic differences among S. liebmannii individuals. The results indicate that a coupled genotypic-phenotypic study is beneficial for documenting the variation present in the little-studied algal species. These studies may be used in future research to clarify taxonomic controversies while generating additional genomic information.How to cite: Jung-Kim HW, Hernández-Herrera RM, Enciso-Padilla I, et al. Genetic variability of Sargassum liebmannii on the coast of Jalisco in the central Mexican Pacific revealed by molecular markers and morphological traits. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2021.08.003  相似文献   

6.
BackgroundAvailability of related rice species is critical for rice breeding and improvement. Two distinct species of domesticated rice exist in the genus Oryza: Oryza sativa (Asian rice) and Oryza glaberrima (African rice). New rice for Africa (NERICA) is derived from interspecific crosses between these two species. Molecular profiling of these germplasms is important for both genetics and breeding studies. We used 30 polymorphic SSR markers to assess the genetic diversity and molecular fingerprints of 53 rice genotypes of O. sativa, O. glaberrima, and NERICA.ResultsIn total, 180 alleles were detected. Average polymorphism information content and Shannon's information index were 0.638 and 1.390, respectively. Population structure and neighbor-joining phylogenetic tree revealed that 53 genotypes grouped into three distinct subpopulations conforming to the original three groups, except three varieties (IR66417, WAB450-4, MZCD74), and that NERICA showed a smaller genetic distance from O. sativa genotypes (0.774) than from O. glaberrima genotypes (0.889). A molecular fingerprint map of the 53 accessions was constructed with a novel encoding method based on the SSR polymorphic alleles. Ten specific SSR markers displayed different allelic profiles between the O. glaberrima and O. sativa genotypes.ConclusionsGenetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.  相似文献   

7.
BackgroundCultivated peanut (Arachis hypogaea. L) represents one of the most important oil crops in the world. Although much effort has been expended to characterize microsatellites or Simple Sequence Repeats (SSRs) in peanut, the quantity and quality of the markers in breeding applications remain limited. Here, genome-wide SSR characterization and marker development were performed using the recently assembled genome of the cultivar Tifrunner.ResultsIn total, 512,900 microsatellites were identified from 2556.9-Mb genomic sequences. Based on the flanking sequences of the identified microsatellites, 7757 primer pairs (markers) were designed, and further evaluated in the assembled genomic sequences of the tetraploid Arachis cultivars, Tifrunner and Shitouqi, and the diploid ancestral species, A. duranensis and A. ipaensis. In silico PCR analysis showed that the SSR markers had high amplification efficiency and polymorphism in four Arachis genotypes. Notably, nearly 60% of these markers were single-locus SSRs in tetraploid Arachis species, indicating they are more specific in distinguishing the alleles of the A and B sub-genomes of peanut. In addition, two markers closely related with purple testa color and 27 markers near to FAD2 genes were identified, which could be used for breeding varieties with purple testa and high-oleic acid content, respectively. Moreover, the potential application of these SSR markers in tracking introgressions from Arachis wild relatives was discussed.ConclusionsThis study reported the development of genomic SSRs from assembled genomic sequences of the tetraploid Arachis Tifrunner, which will be useful for diversity analysis, genetic mapping and functional genomics studies in peanut.How to cite: Ma J, Zhao Y, Chen H, et al. Genome-wide development of polymorphic microsatellite markers and their application in peanut breeding program. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.004.  相似文献   

8.
BackgroundMeretrix petechialis is one of the commercially important marine bivalves. In this study, we selected six highly polymorphic EST-derived microsatellite markers to assess the genetic diversity and population differentiation on nine wild populations of Meretrix petechialis.ResultsThe number of alleles detected per locus ranged from 4 to 30 (mean NA = 27.5) with a total of 165 alleles. The mean value of observed and expected heterozygosities varied from 0.717 to 0.861 and from 0.797 to 0.856, respectively. Meanwhile, the result of Neighbor-joining and overall FST = 0.214 (P < 0.01) reveled that M. petechialis populations from GX are the farthest populations, a certain degree of genetic variation among individuals in each population and the genetic differentiation is significant.ConclusionsGX population has high genetic diversity among individual, and there are certain differences in genetic characteristics among different populations. This study will provide a basis for the domestication and cultivation of genetic diversity of M. petechialis population and the protection of clam germplasm resources.How to citeXu Q, Zheng J, Yan X, et al. Genetic diversity and differentiation of nine populations of the hard clam (Meretrix petechialis) assessed by EST-derived microsatellites. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.003  相似文献   

9.
BackgroundChlorophytum borivilianum is a rare medicinal plant originally distributed throughout the forest of India. The tubers of C. borivilianum are used as an aphrodisiac and impotence supplement. The propagation of C. borivilianum is possible through seeds and tubers, but conventional methods may take several months. Hence in vitro technique of shoot regeneration could be an efficient alternative means of propagating the species. Latest study reported microtuberization of C. borivilianum but there is no sufficient study on a rapid method for shoot multiplication and elongation.ResultsYoung shoot buds of C. borivilianum were cultured on MS medium containing 6-benzylaminopurine (BAP) and Kinetin (Kn), both at 0, 8.88, 17.8 and 26.6 μM, either individually or in combinations. Proliferated shoots were subcultured on fresh medium of the same constituents on week 3 of culture for further shoot multiplication and elongation. BAP alone (8.88–26.6 μM) was significantly effective on shoot multiplication, while Kn alone (8.88–26.6 μM) was significantly effective on shoot elongation compared to the control containing MS basal medium without any plant growth regulator. However, combination of both cytokinins stimulated an interaction producing higher shoot number and shoot length compared to their individual application.ConclusionsThe most suitable combination was 8.88 μM BAP + 8.88 μM Kn, reaching a mean shoot number of 10.83 and shoot length of 6.85 cm.  相似文献   

10.
BackgroundVibrio species display variable and plastic fitness strategies to survive and interact with multiple hosts, including marine aquaculture species that are severely affected by pathogenic Vibrios. The culturable Vibrio sp. strain ArtGut-C1, the focus of this study, provides new evidence of such phenotypic plasticity as it accumulates polyhydroxybutyrate (PHB), a biodegradable polymer with anti-pathogen activity, particularly in the marine larviculture phase. The strain was isolated from the gut of laboratory-reared Artemia individuals, the live diet and PHB carrier used in larviculture. Its main phenotypic properties, taxonomic status and genomic properties are reported based on the whole-genome sequencing.ResultsVibrio sp. ArtGut-C1 yielded 72.6% PHB of cells’ dry weight at 25°C. The genomic average nucleotide identity (ANI) shows it is closely related to V. diabolicus (ANI: 88.6%). Its genome contains 5,236,997-bp with 44.8% GC content, 3,710 protein-coding sequences, 96 RNA, 9 PHB genes functionally related to PHB metabolic pathways, and several genes linked to competing and colonizing abilities.ConclusionsThis culturable PHB-accumulating Vibrio strain shows high genomic and phenotypic variability. It may be used as a natural pathogen biocontrol in the marine hatchery and as a potential cell factory for PHB production.How to cite: Yévenes M, Quiroz M, Maruyama F, et al. Vibrio sp. ArtGut-C1, a polyhydroxybutyrate producer isolated from the gut of the aquaculture live diet Artemia (Crustacea). Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.10.003  相似文献   

11.
BackgroundAssessments of genetic diversity are essential for germplasm characterization and exploitation. Molecular markers are valuable tools for exploring genetic variation and identifying germplasm. They play key roles in a Xanthoceras sorbifolia breeding program.ResultsWe analyzed the genetic diversity of populations of this species using 23 simple sequence repeat (SSR) loci and data on kernel oil content. The 11 populations included in the study were distributed across a large geographic range in China. The kernel oil content differed significantly among populations. The SSR marker analysis detected high genetic diversity among the populations. All SSRs were polymorphic, and we identified 80 alleles across the populations. The number of alleles at each locus ranged from two to six, averaging 3.48 per primer pair. The polymorphism information content values ranged from 0.35 to 0.70, averaging 0.51. Expected heterozygosity, observed heterozygosity, and Shannon's information index calculations detected large genetic variations among populations of different provenance. The high average number of alleles per locus and the allelic diversity observed in the set of genotypes analyzed indicated that the genetic base of this species was relatively wide. The statistically significant positive correlation between genetic and geographic distances suggested adaptations to local conditions.ConclusionsMicrosatellite markers can be used to efficiently distinguish X. sorbifolia populations and assess their genetic diversity. The information we have provided will contribute to the conservation and management of this important plant genetic resource.  相似文献   

12.
BackgroundBiologically active peptides produced from fish wastes are gaining attention because their health benefits. Proteases produced by halophilic microorganisms are considered as a source of active enzymes in high salt systems like fish residues. Hence, the aim of this study was the bioprospection of halophilic microorganisms for the production of proteases to prove their application for peptide production.ResultsHalophilic microorganisms were isolated from saline soils of Mexico and Bolivia. An enzymatic screening was carried out for the detection of lipases, esterases, pHB depolymerases, chitinases, and proteases. Most of the strains were able to produce lipases, esterases, and proteases, and larger hydrolysis halos were detected for protease activity. Halobacillus andaensis was selected to be studied for proteolytic activity production; the microorganism was able to grow on gelatin, yeast extract, skim milk, casein, peptone, fish muscle (Cyprinus carpio), and soy flour as protein sources, and among these sources, fish muscle protein was the best inducer of proteolytic activity, achieving a protease production of 571 U/mL. The extracellular protease was active at 50°C, pH 8, and 1.4 M NaCl and was inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of H. andaensis was used to hydrolyze fish muscle protein for peptide production. The peptides obtained showed a MW of 5.3 kDa and a radical scavenging ability of 10 to 30% on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and a ferric reducing ability of plasma.ConclusionThe use of noncommercial extracellular protease produced by H. andaensis for biologically active peptide production using fish muscle as the protein source presents a great opportunity for high-value peptide production.How to cite: Delgado-García M, Flores-Gallegos AC, Kirchmayr M, et al. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.03.001.  相似文献   

13.
BackgroundWheat is one of the most important crops cultivated all over the world. New high-yielding cultivars that are more resistant to fungal diseases have been permanently developed. The present study aimed at the possibility of accelerating the process of breeding new cultivars, resistant to eyespot, by using doubled haploids (DH) system supported by marker-assisted selection.ResultsTwo highly resistant breeding lines (KBP 0916 and KBH 4942/05) carrying Pch1 gene were crossed with the elite wheat genotypes. Hybrid plants of early generations were analyzed using endopeptidase EpD1 and two SSR markers linked to the Pch1 locus. Selected homozygous and heterozygous genotypes for the Pch1-linked EpD1b allele were used to produce haploid plants. Molecular analyses were performed on haploids to identify plants possessing Pch1 gene. Chromosome doubling was performed only on haploid plants with Pch1 gene. Finally, 65 DH lines carrying eyespot resistance gene Pch1 and 30 lines without this gene were chosen for the eyespot resistance phenotyping in a field experiment.ConclusionsResults of the experiment confirmed higher resistance to eyespot of the genotypes with Pch1 in comparison to those without this gene. This indicates the efficiency of selection at the haploid level.How to cite: Wiśniewska H, Majka M, Kwiatek M, et al. Production of wheat doubled haploids resistant to eyespot supported by marker-assisted selection. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.10.003  相似文献   

14.
BackgroundFor the crossbreeding of Auricularia auricula-judae, selecting the appropriated parents in hybridization is very important. However, the classification and diversity analysis of A. auricula-judae has been equivocal, due to the similarity of the fruiting body morphology and its susceptibility to environmental influences. For this purpose, the molecular diversity of 32 A. auricula-judae commercial cultivars in China was analyzed by using the nuclear ribosomal DNA intergenic spacer.ResultsThe complete nuclear rDNA gene complex of A. auricula-judae isolate is 11,210 bp long, and contains the 18S, 5.8S, and 28S rRNA gene as well as the ITS and IGS regions. Based on the sequence data, four more effective primer combinations for the IGS region of A. auricula-judae were designed. Nucleotide sequence variation in the IGS among 32 A. auricula-judae commercial cultivars in China sorted into three strongly supported clades, which is correlated with geographical regions. Most strains originated from the same area were with a narrow genetic basis and could possibly be domesticated from the local wild-type strains.ConclusionThe grouping information obtained in the present work provides significant information for further genetic improvement in A. auricula-judae, and suggested that the IGS region can be used as an excellent tool for identification of genetic variation.  相似文献   

15.
BackgroundSmall ribonucleic acids represent an important repertoire of mobile molecules that exert key roles in several cell processes including antiviral defense. Small RNA based repertoire includes both small interfering RNA (siRNA) and microRNA (miRNA) molecules. In the Prunus genus, sharka disease, caused by the Plum pox virus (PPV), first occurred on European plum (Prunus domestica) and then spread over among all species in this genus and thus classified as quarantine pathogen. Next-generation sequencing (NGS) was used for the study of siRNA/miRNA molecules; however, NGS relies on adequate extraction protocols. Currently, knowledge of PPV-Prunus interactions in terms of siRNA populations and miRNA species is still scarce, and siRNA/miRNA extraction protocols are limited to species such as peach, almond, and sweet cherry.ResultsWe describe a reliable procedure for siRNA/miRNA purification from Prunus salicina trees, in which previously used protocols did not allow adequate purification. The procedure was based on a combination of commercially available RNA purification kits and specific steps that yielded high quality purifications. The resulting molecules were adequate for library construction and NGS, leading to the development of a pipeline for analysis of both siRNAs and miRNAs in the PPV–P. salicina interactions. Results showed that PPV infection led to altered siRNA profiles in Japanese plum as characterized by decreased 24-nt and increased 21- and 22-nt siRNAs. Infections showed miR164 and miR160 generation and increased miR166, miR171, miR168, miR319, miR157, and miR159.ConclusionWe propose this protocol as a reliable and reproducible small RNA isolation procedure for P. salicina and other Prunus species.  相似文献   

16.
BackgroundMaize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop.ResultsIn this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression–an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments.ConclusionsThis paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.How to cite: Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, et al. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.008  相似文献   

17.
BackgroundHuman is an essential cellular enzyme that is found in all human cells. As this enzyme is upregulated in cancer cells exceedingly, it is used as a target for cancer chemotherapeutic drug development. As such, producing the in-house enzyme for the purpose to speed up the search for more cost-effective and target specific hTopoI inhibitors is warranted. This study aims to compare the optimised conditions for the expression of hTopoI in KM71H (MutS) and X33 (Mut+) strains of Pichia pastoris. P. pastoris transfected with an hTopoI recombinant vector was used for the optimization of a higher level of hTopoI expression.ResultsIn the process, fed-batch cultivation parameters that influence the expression of hTopoI, such as culture temperature, methanol induction and feeding strategy, were optimised in the transfected KM71H and X33 P. pastoris strains in a shake flask system. The cell density and total protein concentration (protein level) of transfected P. pastoris were compared to determine the optimum culture conditions for each transfected P. pastoris strain. A higher hTopoI level was observed in the transfected KM71H culture supernatant (2.26 ng/mL) when the culture was incubated in the optimum conditions.ConclusionsThis study demonstrated that MutS strain (KM71H) expressed and secreted a higher level of hTopoI heterologous protein in the presence of methanol compared to the Mut+ strain; X33 (0.75 ng/mL). However, other aspects of optimization, such as pH, should also be considered in the future, to obtain the optimum expression level of hTopoI in P. pastoris.  相似文献   

18.
BackgroundCellulose as a potential feed resource hinders its utilization because of its complex structure, and cellulase is the key to its biological effective utilization. Animal endogenous probiotics are more susceptible to colonization in the intestinal tract, and their digestive enzymes are more conducive to the digestion and absorption of feed in young animals. Min pigs are potential sources of cellulase probiotics because of the high proportion of dietary fiber in their feed. In this study, the cellulolytic bacteria in the feces of Min pigs were isolated and screened. The characteristics of enzymes and cellulase production were studied, which provided a theoretical basis for the rational utilization of cellulase and high-fiber food in animal production.ResultsIn our study, 10 strains of cellulase producing strains were isolated from Min pig manure, among which the M2 strain had the best enzyme producing ability and was identified as Bacillus velezensis. The optimum production conditions of cellulase from strain M2 were: 2% inoculum, the temperature of 35°C, the pH of 5.0, and the liquid loading volume of 50 mL. The optimum temperature, pH and time for the reaction of cellulase produced by strain M2 were 55°C, 4.5 and 5 min, respectively.ConclusionsMin pigs can be used as a source of cellulase producing strains. The M2 strain isolated from feces was identified as Bacillus velezensis. The cellulase from M2 strain had a good activity and the potential to be used as feed additive for piglets.How to cite: Li F, Xie Y, Gao X, et al. Screening of cellulose degradation bacteria from Min Pigs and optimization of its cellulase production. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.001  相似文献   

19.
20.
BackgroundProcambarus clarkii produces high-quality, delicious meat that is high in protein, low in fat, and rich in calcium and phosphorus. It has become an important aquatic resource in China. Our objectives are (i) to analyze the level of genetic diversity of P. clarkii populations; (ii) to explore the genetic differentiation (Gst); and (iii) to propose appropriate strategies for the conservation.ResultsIn this study, Shannon's index (I) and Nei's gene diversity index (H) for P. clarkii were high (I = 0.3462 and H = 0.2325 on average and I = 0.6264, H = 0.4377 at the species level) based on the SSR markers. The expected heterozygosity value of 17 microsatellite loci in 25 crayfish populations was 0.9317, the observed heterozygosity value was 0.9121, and the observed number of alleles per locus was 2.000; and the effective number of alleles per locus was 1.8075. Among the P. clarkii populations, the inbreeding coefficient within populations (Fis) was 0.2315, overall inbreeding coefficient (Fit) was 0.4438, genetic differentiation coefficient among populations (Fst) was 0.3145 and gene differentiation (Gst) was 0.4785 based on SSR analyses. The cluster analysis results obtained by unweighted pair-group method with arithmetic mean (UPGMA) analysis, principal coordinate analysis (PCoA) and STRUCTURE analysis were similar. A mantel test showed that the isolation-by-distance pattern was not significant.ConclusionsThe high Gst among P. clarkii populations is attributed to genetic drift and geographic isolation. The results indicated that more P. clarkii populations should be collected when formulating conservation and aquaculture strategies.How to citeLiu F, Qu Y-K, Geng C, et al. Analysis of the population structure and genetic diversity of the red swamp crayfish (Procambarus clarkii) in China using SSR markers. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.06.007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号