首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
已知线性空间V的一线性无关组α_1,…,α_m,将它扩充为V的基α_1,…,α_m,一般要先求出β:β不能被α_1,…,α_m线性表出。但也可如次解决:设α_i=(a_(i1),…,a_(in))(i=1,2,…,n),先将矩陈(a_(ij))_(mxn)化成阶梯形,添加一些元素使之成(a_(ij))_(nxn),只要|a_(ij)|≠0,则(a_(ij))_(nxn)的后n—m行即为所添向量。例如,设α_1=(1,4,3,5,7)α_2=(1,3,4,2,3)α_3=(3,5,2,4,1),化成阶梯形后,(a_(ij))_(x)的  相似文献   

2.
简记为A=(a_(ii))_n,或A_n,i,j=1,2,…,n. 我们称元素a_(11),a_(22),…,a_(nn)所在直线为矩阵的主对角线;称元素a_1,a_(2n)-1…a,n-i 1,…a_(n1)所在的直线为矩阵的次对角线或副对角线。 定义1,设A=(a_(ii))_(no)若a_(ii)=a_n-j 1,n-1 1,i,j=1,2,…n,则称矩阵A为次对称矩阵;设J=(a_(ii))_n,若a_i,n-i 1,其余元素全为零,则称J为次么阵。 上述定义的直观意义是,次对称矩阵即是以次对角线成轴对称的矩阵。例如:  相似文献   

3.
设F~n是数域F上的线性空间,V_1与V_2是它的两个子空间,且 V_1=L(a_1,a_2,…,a_r), V_2=L(β_1,β_2,…,β_s), 求V_1∩V_2的基与维数。 普通的方法是:首先求出向量组a_1,a_2,…a_r与β_1,β_2…β_s的极大线性无关组,即V_1与V_2的基,再利用交空间V_1∩V_2中的元素的表示法导出齐次线性方程组,求出齐次线性方程组的一个基础解系,就可得到V_1∩V_2的一个基,从而确定了维数。  相似文献   

4.
设∑A是E~n中的n维单形:e_1,e_2,…,e_(n+1)分别是∑A的n+1个界面上的单位法向量,令D_1=det(e_1,e_2,…,e_(1-1),e_(1+1),…,e_(n+1)),a_1=arc sin |D_1|,则有:sum from i=1 to n+1 (λ_1sin~2α_1)≤(multiply from i=1 to n+1 (λ_1))(1/n sum from i=1 to n+1 1/(λ_1))~n这里λ_1∈R~+,i=1,2,…,n+1  相似文献   

5.
现行理工科线性代数教材中常见有以下类型的习题或例题:已知有六个四维向量:a_1=(2,3,3,5)a_2=(5,0,6,5)a_3=(-1,11,1,10)a_4=(0,-5,-1,-3 ) a_5=(4,11,7,7)a_6=(0,10,2,7)试求由a_1、a_2、a_3、a_4、a_5、a_6所组成的向量组的秩及一个极大线性无关组,并将其余向量由这个极大无关组表示出来.  相似文献   

6.
设P~n={X|X=(x_1,x_2…,x_e),x_j∈[0,1],j=1,2,…,n}。称P~n的元素为Fuzzy向量。两个Fuzzy向量A=(a_1,a_2,…,a_n)与B=(b_1,b_2,…,b_n)的和定义为A+B=(max(a_1,b_1),max(a_2,b_2),…,max(a_n,b_n)λ∈[0,1]与Fuzzy向量的数乘定义为λA=(min(λ,a_1),min(λ,a_2),…,min(λ,a_n)。若Fuzzy向量组A_1,A_2,…,A_n中,任何向量均不能用其余向量线性表出,称向量组为线性无关向量组。容易证明,在P_n  相似文献   

7.
有些排列组合问题若能根据其自身特点找出递推关系,就能解决一些比较困难的问题。 1.错排问题:a_1a_2…a_n是1,2,…n的任一排列,求满足a_i≠i,i=1,2,…n的全体排列个数D_n 解。a_1有n-1种选择,a_1=k,k≠1,那么a_k有两种可能。(1)a_k=1,这时由于a_1=k,a_k=1,则满足原条件的排列个数为D_(n-2) 。(2)a_k≠1,这时由于a_1=k已确定,则满足原条件的排列个数为:D_(n-1)。因此D_n=(n-1)(D_(n-2) D_(n-1))  相似文献   

8.
非齐次线性方程组AX =B(其中A为s×n矩阵 )的解集中极大线性无关向量组的向量个数等于导出组AX =0的基础解系中向量个数加 1,且它们以某种特定方式联系着  相似文献   

9.
大家知道,如果a_1,a_2,a_3三数成等比数列,则a_1a_3=a_2~2;反之,若a_1,a_2,a_3三数满足等式:a_1·a_3=a_2~2,则此三数成等比数列。将这个性质推广,可得等比数列的一系列有趣的性质。首先,我们有: 定理1 若数列a_1,a_2,…,a_n,… (1)是等比数列,则等式 (a_1 a_2 … a_n)(a_3 a_4 … a_(n 2))=(a_2 a_3 … a_(n 1))~2  相似文献   

10.
本文给出几种特殊数列的求和公式: 1、等差数列各项K次幂的和的递推公式。 2、等差数列与等比数列相应项之积的和的公式。 3、设(a_n)为等差数,公差为d,则 (1)sum from i=1 to n (a_ia_(i+k)…a_(1+k-1))=a_1a_2…a_k+(a_na_(n+1)…a_(n+k)-a_1a_2…a_(k+1))╱(k+1)d (2)sum from i=1 to n (1╱a_1a_2…a_(i+k-1))=1╱((k-1)d)(1╱a_1a_2…q_(n-1))-1╱(a_(n+1)a_(n+2)…a_(n+k=1))  相似文献   

11.
文[1]将一个无理不等式推广为:定理1 设正整数 n≥3,a_i∈R~ (i=1,2,…,n),实数 k≥(n-1)/n,则有∑(a_1/(a_2 a_3… a_n))~k≥n/(n-1)~k,当且仅当 a_1=a_2=…=a_n 时取等号.(∑表示对 a_1,a_2,…,a_n 的循环和)文[2]给出如下两个定理:定理2 若 a_i>0(i=1,2,…,n),s=,则(其中m≥1,n≥2,n∈N,p≥0,A>a_i~p).(1)  相似文献   

12.
Holder不等式在不等式理论与应用中有其特殊的效用.本文将着重介绍Holder不不等式的两个推论及它们的应用. Holder不等式的完整形式应是以下定理:若α_i>0,b_i>0(i=1,2,…,n),p,q满足1/p 1/q=1,则(1)若1相似文献   

13.
设S是一个以α_1,α_2,…,α_n为元的n集,且M(S)=(S_1,S_2,…,S_m)是S的子集所成的一样本,现今则 A=[α_(ij)](i=1,2,…m) j=1,2,…,n是m×n的(0,1)一矩阵,这个矩阵称为n-集之子集S_1,…,S_m的关联矩阵。在[1]中,有如下结论,我们写成: 定理:若将S的元和子集S_1,…,S_m重新编号,即S的元为α_(α1),α_(α2),α_(αn)  相似文献   

14.
在许多高等代数教材中,通常介绍的施密特(Schmidt)方法,使我们可以从欧氏空间 R~n 的任意一个基出发,求出一个正交基来,再单位化,求出一个标准正交基。本文给出一种运用矩阵初等变换,从欧氏空间 R~n 的任意一个基求标准正交基的方法,比较直接简单。设 a_i=(a_(1i),a_(2i),…,a_(ni)),i=1,2,…,n 是 R~n 任意一个基,以 a′为列向量构成矩阵 A=(a_(ii)),则 A′A 是一个 n 阶正定矩阵,必与单位矩阵 E 合同,即存在 n 阶可逆矩阵 Q,使得Q′(A′A)Q=E(1)即(Q′A′)(AQ)=E(2)(1)式说明,对矩阵 A′A 施行一系列的列初等变换(相应的初等矩阵的乘积为 Q)及一系列的行初等变换(相应的  相似文献   

15.
梅涅劳斯定理:直线L与△ABC的三边AB,BC,CA分别交于X,Y,Z三点,当且仅当λ_1λ_2λ_3=-1。其中λ_1=(AX)/(XB),λ_2=(BY)/(YC),λ_3=(CZ)/(ZA)。下面试将该定理推广到n维空间。 设V是实数域R上的一个n维向量空间R~n,对于V中任一对向量ξ=(X_(11),X_(12),…,X_(1n)),η=(X_(21),X_(22),…,X_(2n))。记d(ξ,η)=~(1/2)(sum from i=1 to n(X_(2i)-X_(1i))~2),定义内积  相似文献   

16.
对于一个数列a_1,a_2,…,a_n,…来说,它的一般项a_n总可以写成a_n=a_1 (a_2-a_1) (a_3-a_2) … (a_(n-1)-a_(n-2)) (a_n-a_(n-1)) ① 也可以写成a_n=a_1·(a_2/a_1)·(a_3/a_2)·…·(a_(n-1)/(a_(n-2))·a_n/(a_(n-1)) ②这两种数列的变换技巧对于证明某些等式及不等式,或解其他有关数学问题时会带来很多方便,限于篇幅,本文仅以高考试题中的实例来说明其应用。  相似文献   

17.
设∑_A 是 E~n 中的 n 维单形:e_1,e_2…e_(n+1)分别是∑_A 的 n+1个界面上的单位法向量,令Di=det(e_1,e_2,…ei-1,e_(i+1)…e_(n+1)),a_1=arcsin|D|,本文获得了下列不等式sum from i=1 to n+1 λ_1sin~2a_1≤(λ1(1/n sum from i=1 to n+1 1/λ_1)~n这里λ_1∈R~+,i=1,2,…n+1  相似文献   

18.
本文从微分方程的刘维尔定理的证明中引出了一个行列式等式,有趣的是这一等式的成立与定理无关,文中给出了一般的证明。本文采用下列记号:1>X_i,(i=1,2,…,n)表示n维列向量,从它们作列构成的行列式记为X=|X_1X_2…X_n|。2)X_(ij)(i、j=1,2,…,n)表示行列式X的代数余子式。3)n×n矩阵A与n维列向量X_i(i=1,2,…,n)相乘仍为n维列向量,记为AX_i。  相似文献   

19.
设数列{a_n}是公差为d(d≠0)的等差数列。若令a_0=a_1-d,a_(n 1)=a_n d,则① a_1 a_2 … a_n=(1/2d)(a_na_(n 1)-a_0a_1); ② a_1~3 a_2~3 … a_n~3=(1/4d)[(a_na_(n 1))~2-(a_0a_1)~2]。证①∵ a_ka_(k 1)-a_(k-1)a_k=a_k(a_(k 1)-a_(k-1)=2da_k,k=1,2,…。令k=1,2,…,n, 得n个等式,将它们的两边分别相加得 a_na_(a 1)-a_0a_1=2d(a_1 a_2 … a_n)。∴ a_1 a_2 … a_n=(1/(2d))(a_na_(n 1)-a_0a_1)。②∵ (a_ka_(k 1))~2-(a_(k-1)a_k)~2=a_k~2[a_(k 1)~2  相似文献   

20.
众所周知在一个欧氏空间里,对于任意的向量ξ,η有不等式; (ξ,η)≤(ξ,ξ)(η,η)这里〈ζ,η〉叫做向量的内积,式中等号当且仅当向量ζ与η线性相关时成立.这是欧氏空间的Cauchy不等式.据此在欧氏空间R~n中可以证明关于数论中的Cauchy不等式: (a_1b_1+a_2b_2+…+a_nb_n)~2≤(a_1~2+a_2~2+…+a_n~2)(b_1~2+b_2~2+…b_n~2)……(1)式中等号当且仅当a_1/b+a_2/b=…=a_n/b时成立.本文将研究不等式[1]的若干应用,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号