首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、导数概念及其经济意义 导数的定义:设y=f(x)在x_0点的某领域内有定义,极限(若存在)表示函数y=f(x)在x_0点的导数,记为f(x_0)。 又由极限性质可知:(→0时)所以,即x·△x比△x是高阶无穷小,于是可以用f(x_0)△x近似代替△y, 记△y≈f(x_0)△x 当△x=l时,△y≈f(x_0) 意即f(x_0)近似地表示在x_0的基础上自变量改变一个单位时,△y的改变量。  相似文献   

2.
微分学是微积分学的重要的组成部分,而导数是微分学的基本概念之一,因此学生在学习微积分的内容时要时刻抓住导数概念这个关键。通过教学实践及对学生练习中错题的错因分析,笔者认为在理解导数概念时学生需注意以下问题:(一)充分理解导数定义的形式已知函数y=f(x)在点x=x0处可导,那么导数的定义式可取不同的形式,常见的有以下三种:f'(x0)=△lix→m0f(x0 △△xx)-f(x0);f'(x0)=lhi→m0f(x0 hh)-f(x0);f'(x0)=lxi→mx0f(x)-f(x0)x-x0。在这三种常见的形式中要注意1、弄清在怎样的变化过程中求极限,如△x→0,h→0或是x→x0,变化过程不同则分式…  相似文献   

3.
根据导数的定义知,可导函数了(x)在x二x。处的导数为概[f(x) f(xo)]【f(x)一f(xo)] X一XO f(x)一f(x。)厂(x。)= f(x。十△x)一f(x。)纸△x hm二1众n【f(x)十f(x。)〕lixn”与二,与二2f(x。)厂(x。). (2)原式二X一XO令△x=x一xo,则当△x冲0时,x一x。~ 0,即x”x。,所以①式可表示为厂(x。)=坛n”、f(x)一f(x0) X一XO②lim‘叫心f(x。 4t)一f(xo) f(x。)一f(x。一st) 2t又当,任R且二护0时,若△x~0,m△x申0,从而①又可表示为则一2腼工互兰鱼士卫旦二丛,兰迎 名叫司络忿厂(x。)=由此可见可导函数了(x)在间相互等价. f(x。 m△x)…  相似文献   

4.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

5.
本文介绍了一个循环差集的存在性定理.主要结果是:设f(x)是域F2^d=L上一个置换多项式,如果f(x)是一个几乎完全非线性函数,则Im△f(x)是L^ =L\{0}中一个循环差集当且仅当对任意a(≠0,1)∈Fq,|Sa|=q=2^m.这里,Sa={(x,y)|△f(x) a△f(y)=0}.△f(x)=f(x 1) f(x)|Sa|表示集合Sa的元素个数,作为应用,证明了在一定条件下,对f(x)=x^3。和f(x)=x^5,Im△f(x)是L^ 中一个循环差集.  相似文献   

6.
1问题 在多年的高三复习教学中,笔者一直有个困惑:课本中导数的定义,当△x→0时,f(x0+△x)-f(x0)/△x→l(l为常数),通常记作lim△x→0 f(x0+△x)-f(x0)/△x=l,把l称为f(x)在点x0处的导数,记作f^1(x0)。学生能理解多少?学生能理解“趋近”吗?“无限趋近”在解题中有什么作用?带着这些疑问,笔者有意做了一些积累,现与同仁分享交流,若有不当,敬请指正。  相似文献   

7.
例已知函数f(x)=2x~2+1/x+λlnx(x>0),f(x)的导数是f'(x)。(Ⅰ)当λ<0时,求证:对于任意的两个不等的正数x_1,x_2,(f(x_1)+f(x_2))/2>f((x_1+x_2)/2);  相似文献   

8.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f′(x),从而构成一个新的函数f′(x),称这个函数f′(x)为函数y=f(x)在开区间内的导函数.f′(x)=y′=lim△x→0△y/△x=lim△x→0f(x+△x)-f(x)/△x.那么函数y=f(x)与其导函数y=f′(x)有何关系?本文将用导函数自身的定义来探讨它们之间的联系并加以应用.……  相似文献   

9.
导数是新课标下的新增内容.导数的工具性拓展了导数的学习与研究空间,除了应用导数解决函数的单调性、最值外,在求函数的值域、证明不等式、距离等方面都有广泛的应用,在高考复习时要重视.一、应用导数的定义求函数的极限【例1】已知f(x)=lnx,求极限limx→1f(x)-f(1)x-1的值.解:∵f(x)=lnx,f′(x)=1x,∴limx→1f(x)-1x-1=f′(1)=1.点评:导数定义的等价形式为f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limx→x0f(x)-f(x0)x-x0.二、应用导数的工具性求函数的单调区间、最值及值域【例2】求函数f(x)=xcosx-sinx(x≥0)的单调递增区间.解:f′(x)=-xsi…  相似文献   

10.
微积分学的基本问题是确定曲线的斜率和曲边梯形的面积。如何利用无限小求得解答,已举例说明。下面将概要地介绍如何运用无限小的运算研究微积分理论。一、微分学定义1.若函数 y=f(x)在 x=r 处有定义,且△f/△x=(f(r+△x)-f(r))/△x是有限数,其标准部分与无限小△x 的选取无关,则称 f 在 x=r 处可微,并且 f 在该处的导数为  相似文献   

11.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

12.
导数的概念是导数这一大节的基础,只有掌握好它,才能更好的把握住本大节知识.现将导数的概念的题型小结如下: 一、用导数的概念直接解题例1 给出函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1 △x,1 △y),则△y/△x等于  相似文献   

13.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

14.
导数是一个很好的工具 ,应用十分广泛 .在导数教学中 ,如果注意以下常见的八种错误 ,并让学生理解产生错误的原因 ,能够帮助他们迅速把握这部分内容 ,提高学习效率 ,为日后导数的综合应用铺平道路 .1 对导数的定义把握不准致错例 1 若 f(x)在x0 处可导 ,则limΔx→ 0f(x0 -Δx) -f(x0 )Δx =(   )(A) -f′(x0 )   (B) f′(x0 )(C)f′( -x0 )   (D) 2f′(x0 )错解 选B评析 这里函数值的增量f(x0 -Δx)-f(x0 )与自变量的增量Δx =x0 -(x0 -Δx)顺序不一致 ,不符合导数的定义 ,因此答案B是错误的 .应为 :原式 =-limΔx→ 0f(x0 -…  相似文献   

15.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

16.
阮莉华 《考试》2008,(9):23-24
一、导数的概念及其几何意义【例1】(Ⅰ)若函数f(x)在x=x_0处的导数为A,求lim(?)(f(x_0—3h)—f(x_0))/h;(Ⅱ)求函数f(x)=2xlnx在x=3处的切线方程。  相似文献   

17.
问题(2007年广东省高考理科第21题)已知函数f(x)=x2 x-1,α,β是方程f(x)=0的两个根(α>β),是f(x)的导数,设a1=1,an 1=an-f(an)/f'(an)(n=1,2,…).(1)求α,β的值;  相似文献   

18.
刘开军 《职教论坛》2003,(20):62-62
充分条件、必要条件、充要条件是研究命题条件和结论的相互关系时常用的数学术语,下面在微分中说明这些条件的应用。一、充分条件假言判断“若A则B”为真,则称条件A是B的充分条件。简言之,“有此则必然,无此未必不然”。例1若函数y=f(x)在点x0有极值,且f(x0)存在,则函数y=f(x)在点x0的导数为零,即f’(x0)=0。分析很明显,当函数y=f(x)在点x0有极值且导数存在时,根据导数的几何意义,函数所表示的曲线在该点的切线平行于x轴,即有f’(x0)=0。但倒过来说,“若函数y=f(x)在点x0的导数为零,则函数y=f(x)在点x0有极值”就不一定成立了。因为使y=f(…  相似文献   

19.
首先指出,当自变量x在点x_0处得到增量△x而变为x_0 △x时,函数u=g(x)的函数值就由u_0=g(x_0)变成u=g(x_0△x)。此时或有≠u_0,或有u≠u_0。记△u=u-u_0,则或有△u=0,或有△u≠0。记由增量△u引起的函数y=f(u)在u_0,处的增量为△y=f(u_n △u)-f(u_n)。由于u_n △u=u=g(x_n △x),u_n=g(x_n),得△y=[g(x_n △x)]-f[g(x_n)]。因此△y同时是函数y=f[g(x)]在x_0处由增量△x引起的函数y的增量。当增量△x使u=u_n时,有△y=0。  相似文献   

20.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号