首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
求解恒成立问题时,可构造我们熟悉的函数类型,然后根据函数的性质解题·求解时经常要应用变量分离的方法,应用这一方法的关键是分清参数与变量·一、构造一次函数型y=ax+b例1若不等式2x-1>m(x2-1),对满足|m|≤2的所有m都成立,求x的取值范围·解:视m为主元,构造一次型函数g(m)=(x2-1)m-(2x-1),原题即对满足|m|≤2的m,g(m)<0恒成立·由函数图象是一条线段,知应g(-2)<0,g(2)<0,即-2(x2-1)-(2x-1)<0,2(x2-1)-(2x-1)<0·解得-12+7相似文献   

2.
构造函数解题需要较强的创新意识,是高考改革的方向,本文愿就此抛砖引玉.一、构造一次函数y=kx+b(k≠0) 例1 设a,b,c∈(-1,1),求证:ab+bc+ca>-1. 解析作辅助函数f(x)=(b+c)x+bc+1.因为f(1)=(b+1)(c+1)>0,f(-1)=(1-b)(1-c)>0,所以在(-1,1)上恒有f(x)>0.又-10,即原不等式成立.例2 设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求x  相似文献   

3.
根据一次函数的图象及单调性,容易推得如下结论成立:一次函数f(x)=kx+b(k≠0),当x∈[m,n]时,1f(x)>0f(m)>0且f(n)>0;2f(x)<0f(m)<0且f(n)<0;3f(x)=0f(m)f(n)≤0.有些数学问题,可根据题意转化为关于某一变量的一次函数,应用上述结论求解,简捷、明了.例1对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求实数x的取值范围.解:不等式x2+px>4x+p-3即(x-1)p+x2-4x+3>0令f(p)=(x-1)p+x2-4x+3视它为关于p的一次函数,显然x≠1.由于0≤p≤4,所以由f(p)>0恒成立可得f(0)>0且f(4)>0,即f(0)=x2-4x+3>0f(4)=4(x-1)+x2-4x+3>0.解之得x<-1或x>3.例2…  相似文献   

4.
函数与不等式关系密切,尤其是含参数的不等式问题,变量较多.处理这类问题,对思维能力的要求很高,稍不注意,便会引起思维混乱导致半途而废,得不出结果.遇到这类问题时,我们应如何处理呢? 例 1 如果 2x-1>m(x2-1)对任m∈[-2,2]都成立,求x的范围. 分析:解题时易想到,由原不等式解出x,再根据m的范围确定x的范围.可以想象,此法解题过程非常烦琐,很难解出结果.应如何考虑呢?注意到m的范围己确定,转换一下角度,把所给不等式看成m的不等式如何?原不等式变形为m(x2-1)-(2x-1)<0,左边显然是m的一次函数.记作f(m),由题意,f(m)<0对任m∈[-2,-]恒成立,由一次函数性质只需f(-2)<0 f(2)<0即可,这样便可解这个关于x的不等式  相似文献   

5.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

6.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

7.
常量与变量是数学的两个重要概念.在不同的问题中,同一个字母可能是常量,也可能是变量,具有相对性.在解题时常常被忽视或对其认识不足.现举几例,供同学们借鉴. 例1 若不等式2x-1>m(x2-1)对满足-2≤m≤2的所有m都成立,求x的取值范围. 解:原不等式化为(x2-1)m-(2x-1)<0,记f(m)=(x2-1)m-(2x-1)(-2≤m≤2).根据题意知,要使不等式成立,只要f(-2)<0且f(2)<0,即2x2+2x-3>0且 2x2-2x-1<0.解之,x的取值范围是(-1+7~(1/7))/2相似文献   

8.
正函数是中学数学中最为重要的思想方法,一些不等式的证明常常运用函数思想进行求解.下面通过一些典型问题谈谈其在不等式证明中的应用.一、一元不等式的证明对于一元不等式的证明问题可考虑把问题转化为求函数的最大(小)值问题.1.证明不等式f(x)g(x)成立,可设F(x)=f(x)-g(x),问题转化为证明F(x)min0;证明不等式f(x)g(x)成立,可设F(x)=f(x)-g(x),问题转化为证明F(x)max0.例1当x0时,证明:ln(1+x)x-12x2.分析:不等式ln(1+x)x-12x2可化为ln(1+x)-x+  相似文献   

9.
<正>在方程有解、不等式恒成立等问题中求参数的取值范围时,如果能够把参数分离出来,即方程或不等式的一端为参数,另一端为某个变量的代数式,则只要研究其对应函数的性质即可根据问题的具体设问得出参数的取值范围。下面我们就来谈谈分离参数法在解参数取值范围问题中的应用。例1已知函数f(x)=(ax2+x-1)·e x(a<0),当a=-1时,函数y=f(x)与g(x)=1/3x2+x-1)·e x(a<0),当a=-1时,函数y=f(x)与g(x)=1/3x3+1/2x3+1/2x2+m的图像有三个不同  相似文献   

10.
函数是中学数学中永恒的主题,并且它与方程、不等式等内容的联系非常密切.本文针对一类含参变量方程和不等式问题进行探讨,通过利用函数的有关性质,使这些问题化难为易.一、构造函数法例1对于0≤x≤1,不等式(x-(1)log3a)2-6xlog3a x 1>0恒成立,求a的取值范围.解:构造函数(f x)[  相似文献   

11.
如何确定恒成立或有解的不等式中参数的范围是一个难点 ,如果能将参数分离出来 ,再运用有关的函数方程等知识可以较好解决 .下面分情况说明 .一、a 0在 | x|≤ 2时恒成立 ,求 m的范围 .解 :原不等式等价于 ( x2 - x + 1) m 0 ,m f ( x…  相似文献   

12.
不等式恒成立 ,求参数的取值范围”是不等式中一大题型 ,因不等式的千姿百态 ,因此常令学生不知如何着手解决 ,本文介绍处理这类问题的两大思想方法 .1 函数思想若 f (x) >0 (或 f (x) <0 )在区间 A上恒成立 ,则只需 f (x) min >0 (或 f (x) m ax <0 ) .说明 :若 f (x) >0 (或 f (x) <0 )能分离变量化为 :g(a) 2时 ,不等式 x2 + ax + 8>0恒成立 ,求 a的取值范围 .解法 1 :令 f (x) =x2 + ax + 8,当 -a2 ≤ 2即 a≥ -4时 ,f (x) >2 2 +2 a + 8=1 2 + 2 a.由题意有 :2 a + 1 2≥ 0…  相似文献   

13.
数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,也就是对题目中的条件和结论既分析其代数含义又挖掘其几何背景,在代数与几何的结合上寻找解题思路·最常用的是以形助数的解题方法,其实质就是对图形性质的研究,使要解决的数的问题转化为形的讨论,实现“由一种代数形式转化为几何形式”的数学化归·例1(2005年高考全国卷Ⅱ)函数f(x)=2|x+1|-|x-1|,求使f(x)≥22的x的取值范围·解:f(x)≥22,也即|x+1|-|x-1|≥32·设函数g(x)=|x+1|-|x-1|=-2(x≤-1),2x(-1相似文献   

14.
函数思想就是用运动和变化的观点 ,去分析和研究数学问题中的数量关系 ,建立函数关系或构造函数关系 ,运用函数的图象和性质去分析问题、转化问题 ,从而使问题获得解决 ;方程思想 ,就是分析数学问题中的变量间的等量关系 ,从而建立方程 ,或构造方程 ,通过解方程 ,使问题获得解决。方程思想与函数思想密切相关 ,其关系可用下图表示 :二元方程f ( x,y) =0   函数y =f( x)y =0→ 一元方程 f ( x) =0y >0→或 y <0 一元不等式 f ( x) >0或 f ( x) <0x∈ N→ 数列 { an =f ( n) }一、方程问题化为函数求解例 1 设有对数方程 lg( ax) =2 1 g( …  相似文献   

15.
《数学教学通讯》2006,(3):I0001-I0016
函数与方程的思想方法 1.此问题由于常见的思维定势。易把它看成关于x的不等式进行分类讨论。然而,若变换一个角度以m为主元。记f(m)-(x^2-1)m-(2x-1)。则问题转化为求一次函数(或常数函数)f(m)的值在区间[-2,2]内恒负时参数x应该满足的条件。要使f(m)<0,只要使{f(-2)<0, f(2)<0,即{-2(x^2-1)-(2x-1)<0, 2(x^2-1)-(2x-1)<0,从而解得x∈((√7-1)/2,(√3+1)/2)。  相似文献   

16.
解决关于不等式恒成立的这类非函数问题,一般都要先建立函数解析式,并在函数定义域内充分挖掘函数的性质,给出问题的正确解答,下面举例说明. [例1] 求使不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求实数x的取值范围. 分析:原不等式移项得:  相似文献   

17.
正笔者在批改学生作业时发现,学生在不等式恒成立的条件下求参数范围竟然不知所措,因此笔者觉得有必要对此类问题进行简单分析,并对几种方法进行对比分析,以供同行研讨.1.问题的提出已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R),(1)若k=2,求以M(2,f(2))为切点的曲线的切线方程;(2)若函数f(x)≤0恒成立,确定实数k的取值范围;(3)证明:  相似文献   

18.
一、选择题(共10小题,每小题5分,共50分每小题有且只有一个正确答案,请将你的正确答案填写在答题卡指定位置上)1下列四个函数中,当n→∞时极限不是2的是()(A){2+(32)n}(B){2-(32)n}(C){2+(-32)n}(D){3·(32)n}2已知函数在f(x)在x=1处的导数为3,则f(x)的解析式可能是()(A)f(x)=(x-1)3+3(x-1)(B)f(x)=2(x-1)(C)f(x)=2(x-1)2(D)f(x)=x-13设函数f(x)=2x-3(x≤0)x(0相似文献   

19.
例1(2004年重庆高考题)设函数f(x)=x(x-1)·(x-a),a>1,求导数f'(x),并证明有两个不同的极值点x1、x2.解析f'(x)=3x2-2(1+a)x+a.令f'(x)=0,得方程3x2-2(1+a)x+a=0.因Δ=4(a2-a+1)≥4a>0,故方程有两个不同的实根x1、x2.设x10;当x1x2时,f'(x)>0,因此,x1是极大值点,x2是极小值点.例2(2004年全国高考题)已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.解析函数f(x)的导数:f'(x)=3ax2+6x-1.(Ⅰ)当f'(x)<0(xR)时,f(x)是减函数.3ax2+6x-1<0(xR)a<0且Δ…  相似文献   

20.
文 [1 ],[2 ]各用一种方法介绍了形如函数 f( x) =ax2 + b- x( x≥ 0 ,a>1 ,b≥ 0 )(下称函数 )的最小值的求法 ,文 [3]用三种不同策略研究了比函数 更一般的函数f( x) =m x2 + 1 + nx(其中 mn<0 ,且 | nm|<1 ) (下称函数 )的值域 .本文再给出函数 的值域的一种新求法 .用待定系数法将 f( x)变形为f( x) =m+ n2 ( x2 + 1 + x) + m- n2( x2 + 1 - x) .( 1 )若 m>0 ,n<0 ,则由 | nm| <1得- m0 ,m- n2 >0 ,又   x2 + 1 + x>| x| + x≥ 0 ,x2 + 1 - x=1x2 + 1 + x>0 ,故由基本不等式得 f( x)≥ 2·m+ n2 ( x2 + …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号