首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform.  相似文献   

2.
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.  相似文献   

3.
We present a microfluidic parallel circuit that directly compares the test channel of an unknown hydraulic resistance with the reference channel with a known resistance, thereby measuring the unknown resistance without any measurement setup, such as standard pressure gauges. Many of microfluidic applications require the precise transport of fluid along a channel network with complex patterns. Therefore, it is important to accurately characterize and measure the hydraulic resistance of each channel segment, and determines whether the device principle works well. However, there is no fluidic device that includes features, such as the ability to diagnose microfluidic problems by measuring the hydraulic resistance of a microfluidic component in microscales. To address the above need, we demonstrate a simple strategy to measure an unknown hydraulic resistance, by characterizing the hydraulic resistance of microchannels with different widths and defining an equivalent linear channel of a microchannel with repeated patterns of a sudden contraction and expansion.  相似文献   

4.
Adler M  Groisman A 《Biomicrofluidics》2012,6(2):24109-2410916
Mixing of liquids to produce solutions with different concentrations is one of the basic functionalities of microfluidic devices. Generation of specific temporal patterns of concentration in microfluidic devices is an important technique to study responses of cells and model organisms to variations in the chemical composition of their environment. Here, we present a simple microfluidic network that linearly converts pressure at an inlet into concentration of a soluble reagent in an observation region and also enables independent concurrent linear control of concentrations of two reagents. The microfluidic device has an integrated mixer channel with chaotic three-dimensional flow that facilitates rapid switching of concentrations in a continuous range. A simple pneumatic setup generating linear ramps of pressure is used to produce smooth linear ramps and triangular waves of concentration with different slopes. The use of chaotic vs. laminar mixers is discussed in the context of microfluidic devices providing rapid switching and generating temporal waves of concentration.  相似文献   

5.
Control of the 3D microenvironment for cultured cells is essential for understanding the complex relationships that biomolecular concentration gradients have on cellular growth, regeneration, and differentiation. This paper reports a microfluidic device for delivering gradients of soluble molecules to cells in an open reservoir without exposing the cells to flow. The cells are cultured on a polyester membrane that shields them from the flow that delivers the gradient. A novel "lid" design is implemented which prevents leakage from around the membrane without requiring sealing agents or adhesives. Once layers are molded, device fabrication can be performed within minutes while at room temperature. Surface gradients were characterized with epifluorescence microscopy; image analysis verified that sharp gradients (~33 μm wide) can be reproducibly generated. We show that heterogeneous laminar flow patterns of Orange and Green Cell Tracker (CT) applied beneath the membrane can be localized to cells cultured on the other side; concentration profile scans show the extent of CT diffusion parallel to the membrane's surface to be 10-20 μm. Our device is ideal for conventional cell culture because the cell culture surface is readily accessible to physical manipulation (e.g., micropipette access), the cell culture medium is in direct contact with the incubator atmosphere (i.e., no special protocols for ensuring proper equilibration of gas concentrations are required), and the cells are not subjected to flow-induced shear forces, which are advantageous attributes not commonly found in closed-channel microfluidic designs.  相似文献   

6.
Yang H  Qiao X  Bhattacharyya MK  Dong L 《Biomicrofluidics》2011,5(4):44103-4410311
Highly motile Phytophthora sojae (P. sojae) zoospores of an oomycete plant pathogen and antioomycete candidate chemicals were encapsulated into microdroplets. Random fast self-motion of P. sojae zoospores was overcome by choosing an appropriate flow rate for a zoospore suspension. To influence stochastic loading of zoospores into a microfluidic channel, a zoospore suspension was directly preloaded into a microtubing with a largely reduced inner diameter. A relatively high single zoospore encapsulation rate of 60.5% was achieved on a most trivial T-junction droplet generator platform, without involving any specially designed channel geometry. We speculated that spatial reduction in the diameter direction of microtubing added a degree of zoospore ordering in the longitudinal direction of microtubing and thus influenced positively to change the inherent limitation of stochastic encapsulation of zoospores. Comparative phenotypic study of a plant oomycete pathogen at a single zoospore level had not been achieved earlier. Phenotypic changes of zoospores responding to various chemical concentration conditions were measured in multiple droplets in parallel, providing a reliable data set and thus an improved statistic at a low chemical consumption. Since each droplet compartment contained a single zoospore, we were able to track the germinating history of individual zoospores without being interfered by other germinating zoospores, achieving a high spatial resolution. By adapting some existing droplet immobilization and concentration gradient generation techniques, the droplet approach could potentially lead to a medium-to-high throughput, reliable screening assay for chemicals against many other highly motile zoospores of pathogens.  相似文献   

7.
Lee DH  Lee W  Um E  Park JK 《Biomicrofluidics》2011,5(3):34117-341179
Precise temporal control of microfluidic droplets such as synchronization and combinatorial pairing of droplets is required to achieve a variety range of chemical and biochemical reactions inside microfluidic networks. Here, we present a facile and robust microfluidic platform enabling uniform interval control of flowing droplets for the precise temporal synchronization and pairing of picoliter droplets with a reagent. By incorporating microbridge structures interconnecting the droplet-carrying channel and the flow control channel, a fluidic pressure drop was derived between the two fluidic channels via the microbridge structures, reordering flowing droplets with a defined uniform interval. Through the adjustment of the control oil flow rate, the droplet intervals were flexibly and precisely adjustable. With this mechanism of droplet spacing, the gelation of the alginate droplets as well as control of the droplet interval was simultaneously achieved by additional control oil flow including calcified oleic acid. In addition, by parallel linking identical microfluidic modules with distinct sample inlet, controlled synchronization and pairing of two distinct droplets were demonstrated. This method is applicable to facilitate and develop many droplet-based microfluidic applications, including biological assay, combinatorial synthesis, and high-throughput screening.  相似文献   

8.
Understanding biomolecular gradients and their role in biological processes is essential for fully comprehending the underlying mechanisms of cells in living tissue. Conventional in vitro gradient-generating methods are unpredictable and difficult to characterize, owing to temporal and spatial fluctuations. The field of microfluidics enables complex user-defined gradients to be generated based on a detailed understanding of fluidic behavior at the μm-scale. By using microfluidic gradients created by flow, it is possible to develop rapid and dynamic stepwise concentration gradients. However, cells exposed to stepwise gradients can be perturbed by signals from neighboring cells exposed to another concentration. Hence, there is a need for a device that generates a stepwise gradient at discrete and isolated locations. Here, we present a microfluidic device for generating a stepwise concentration gradient, which utilizes a microwell slide''s pre-defined compartmentalized structure to physically separate different reagent concentrations. The gradient was generated due to flow resistance in the microchannel configuration of the device, which was designed using hydraulic analogy and theoretically verified by computational fluidic dynamics simulations. The device had two reagent channels and two dilutant channels, leading to eight chambers, each containing 4 microwells. A dose-dependency assay was performed using bovine aortic endothelial cells treated with saponin. High reproducibility between experiments was confirmed by evaluating the number of living cells in a live-dead assay. Our device generates a fully mixed fluid profile using a simple microchannel configuration and could be used in various gradient studies, e.g., screening for cytostatics or antibiotics.  相似文献   

9.
Micromixers with floor-grooved microfluidic channels have been successfully demonstrated in experiment. In this work, we numerically simulated the mixing within the devices and used the obtained concentration versus channel length profiles to quantitatively characterize the process. It was found that the concentration at any given cross-section location of the microfluidic channel periodically oscillates along the channel length, in coordination with the groove-caused helical flow during the mixing, and eventually converges to the neutral concentration value of two the mixing fluids. With these data, the specific channel length required for each helical flow to complete, the mixing efficiency of the devices, and the total channel length required to complete a mixing were easily defined and quantified, and were used to directly and comprehensively characterize the micromixing. This concentration versus channel length profile-based characterization method was also demonstrated in quantitatively analyzing the micromixing within a classic T mixer. It has clear advantages over the traditional concentration image-based characterization method that is only able to provide qualitative or semiquantitative information about a micromixing, and is expected to find an increasing use in studying mixing and optimizing device structure through numerical simulations.  相似文献   

10.
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures.  相似文献   

11.
A simple microfluidic 3D hydrodynamic flow focusing device has been developed and demonstrated quantitative determinations of quantum dot 525 with antibody (QD525-antibody) and hemagglutinin epitope tagged MAX (HA-MAX) protein concentrations. This device had a step depth cross junction structure at a hydrodynamic flow focusing point at which the analyte stream was flowed into a main detection channel and pinched not only horizontally but also vertically by two sheath streams. As a result, a triangular cross-sectional flow profile of the analyte stream was formed and the laser was focused on the top of the triangular shaped analyte stream. Since the detection volume was smaller than the radius of laser spot, a photon burst histogram showed Gaussian distribution, which was necessary for the quantitative analysis of protein concentration. By using this approach, a linear concentration curve of QD525-antibody down to 10 pM was demonstrated. In addition, the concentration of HA-MAX protein in HEK293 cell lysate was determined as 0.283 ± 0.015 nM. This approach requires for only 1 min determining protein concentration. As the best of our knowledge, this is the first time to determinate protein concentration by using single molecule detection techniques.  相似文献   

12.
Miniaturization in biological analyses has several advantages, such as sample volume reduction and fast response time. The integration of miniaturized biosensors within lab-on-a-chip setups under flow conditions is highly desirable, not only because it simplifies process handling but also because measurements become more robust and operator-independent. In this work, we study the integration of flow amperometric biosensors within a microfluidic platform when analyte concentration is indirectly measured. As a case study, we used a platinum miniaturized glucose biosensor, where glucose is enzymatically converted to [Formula: see text] that is oxidized at the electrode. The experimental results produced are strongly coupled to a theoretical analysis of fluid dynamic conditions affecting the electrochemical response of the sensor. We verified that the choice of the inlet flow rate is a critical parameter in flow biosensors, because it affects both glucose and [Formula: see text] transport, to and from the electrode. We identify optimal flow rate conditions for accurate sensing at high time resolution. A dimensionless theoretical analysis allows the extension of the results to other sensing systems according to fluid dynamic similarity principles. Furthermore, we developed a microfluidic design that connects a sampling unit to the biosensor, in order to decouple the sampling flow rate from that of the actual measurement.  相似文献   

13.
In this study, we developed a miniaturized microfluidic-based high-throughput cell toxicity assay to create an in vitro model of Parkinson's disease (PD). In particular, we generated concentration gradients of 6-hydroxydopamine (6-OHDA) to trigger a process of neuronal apoptosis in pheochromocytoma PC12 neuronal cell line. PC12 cells were cultured in a microfluidic channel, and a concentration gradient of 6-OHDA was generated in the channel by using a back and forth movement of the fluid flow. Cellular apoptosis was then analyzed along the channel. The results indicate that at low concentrations of 6-OHDA along the gradient (i.e., approximately less than 260 μM), the neuronal death in the channel was mainly induced by apoptosis, while at higher concentrations, 6-OHDA induced neuronal death mainly through necrosis. Thus, this concentration appears to be useful for creating an in vitro model of PD by inducing the highest level of apoptosis in PC12 cells. As microfluidic systems are advantageous in a range of properties such as throughput and lower use of reagents, they may provide a useful approach for generating in vitro models of disease for drug discovery applications.  相似文献   

14.
Robust bubble-free priming of complex microfluidic chips represents a critical, yet often unmet prerequisite to enable their practical and widespread application. Towards this end, the usage of a network of capillary stop valves as a generic design feature is proposed. Design principles, numerical simulations, and their application in the development of a microfluidic cell culture device are presented. This chip comprises eight parallel chambers for the assembly and cultivation of human hepatocytes and endothelial cells. The inlet channel divides into cell chambers, after which the flows are reunited to a single chip outlet. Dimensions and geometry of channels and cell chambers are designed to yield capillary burst pressures sequentially increasing towards the chip outlet. Thus, progress of liquid flow through the device is predefined by design and enclosure of air bubbles inside the microfluidic structures is efficiently avoided. Capillary stop valves were designed using numerical simulations. Devices were fabricated in cyclic olefin polymer. Pressure during filling was determined experimentally and is in good agreement with data obtained from simulation.  相似文献   

15.
This paper presents a field-flow method for separating particle populations in a dielectrophoretic (DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method.  相似文献   

16.
We present a microfluidic platform able to trap single GUVs in parallel. GUVs are used as model membranes across many fields of biophysics including lipid rafts, membrane fusion, and nanotubes. While their creation is relatively facile, handling and addressing single vesicles remains challenging. The PDMS microchip used herein contains 60 chambers, each with posts able to passively capture single GUVs without compromising their integrity. The design allows for circular valves to be lowered from the channel ceiling to isolate the vesicles from rest of the channel network. GUVs containing calcein were trapped and by rapidly opening the valves, the membrane pore protein α-hemolysin (αHL) was introduced to the membrane. Confocal microscopy revealed the kinetics of the small molecule efflux for different protein concentrations. This microfluidic approach greatly improves the number of experiments possible and can be applied to a wide range of biophysical applications.  相似文献   

17.
Lim CY  Lam YC 《Biomicrofluidics》2012,6(1):12816-1281617
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.  相似文献   

18.
Microfluidic devices have been established as useful platforms for cell culture for a broad range of applications, but challenges associated with controlling gradients of oxygen and other soluble factors and hemodynamic shear forces in small, confined channels have emerged. For instance, simple microfluidic constructs comprising a single cell culture compartment in a dynamic flow condition must handle tradeoffs between sustaining oxygen delivery and limiting hemodynamic shear forces imparted to the cells. These tradeoffs present significant difficulties in the culture of mesenchymal stem cells (MSCs), where shear is known to regulate signaling, proliferation, and expression. Several approaches designed to shield cells in microfluidic devices from excessive shear while maintaining sufficient oxygen concentrations and transport have been reported. Here we present the relationship between oxygen transport and shear in a "membrane bilayer" microfluidic device, in which soluble factors are delivered to a cell population by means of flow through a proximate channel separated from the culture channel by a membrane. We present an analytical model that describes the characteristics of this device and its ability to independently modulate oxygen delivery and hemodynamic shear imparted to the cultured cells. This bilayer configuration provides a more uniform oxygen concentration profile that is possible in a single-channel system, and it enables independent tuning of oxygen transport and shear parameters to meet requirements for MSCs and other cells known to be sensitive to hemodynamic shear stresses.  相似文献   

19.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

20.
A sequential and high-throughput single-cell manipulation system for a large volume of cells was developed and the successive manipulation for single cell involving single-cell isolation, individual labeling, and individual rupture was realized in a microhydrodynamic flow channel fabricated by using two-dimensional simple flow channels. This microfluidic system consisted of the successive single-cell handlings of single-cell isolation from a large number of cells in cell suspension, labeling each isolated single cell and the lysate extraction from each labeled single cell. This microfluidic system was composed of main channels, cell-trapping pockets, drain channels, and single-cell content collection channels which were fabricated by polydimethylsiloxane. We demonstrated two kinds of prototypes for sequential single-cell manipulations, one was equipped with 16 single-cell isolation pockets in microchannel and the other was constructed of 512 single-cell isolation pockets. In this study, we demonstrated high-throughput and high-volume single-cell isolation with 512 pocket type device. The total number of isolated single cells in each isolation pocket from the cell suspension at a time was 426 for the cell line of African green monkey kidney, COS-1, and 360 for the rat primary brown preadipocytes, BAT. All isolated cells were stained with fluorescence dye injected into the same microchannel successfully. In addition, the extraction and collection of the cell contents was demonstrated using isolated stained COS-1 cells. The cell contents extracted from each captured cell were individually collected within each collection channel by local hydrodynamic flow. The sequential trapping, labeling, and content extraction with 512 pocket type devices realized high-throughput single-cell manipulations for innovative single-cell handling, feasible staining, and accurate cell rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号