首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正> 求过定点的双曲线的中点弦问题,通常有下面两种方法: (1)点差法,即设出弦的两端点的坐标代入双曲线方程后相减,得到弦中点坐标与弦所在直线斜率的关系,从而求出直线方程. (2)联立法,即将直线方程与双曲线方程联立,利用韦达定理与  相似文献   

2.
解过定点的双曲线的中点弦问题,通常有下面两种方法: (1)点差法,即设出弦的两端点的坐标代入双曲线方程后相减,得到弦中点坐标与弦所在直线的斜率的关系,从而求出直线方程. (2)联立法,即将直接方程与双曲线方程联立,利用韦达定理与判别式求解.  相似文献   

3.
<正>在求解圆锥曲线一类问题时,若题目中给出直线与圆锥曲线相交被截得线段中点坐标的时候,把直线和圆锥曲线的两个交点坐标代入圆锥曲线的方程,然后将两个等式作差,得到一个与弦的中点坐标和斜率有关的式子,从中求出直线的斜率,然后利用中点求出直线方程。通常我们将与圆锥曲线的弦的中点有关的问题称之为圆锥曲线的"中点弦问题",把这种代点作差的方法称为"点差法"。"中点弦问题"如果能适时运用点差法,  相似文献   

4.
如何求二次曲线的弦的中点轨迹方程,这是中学解析几何中常见的问题之一。目前解决这类问题的主要步骤是:根据所给条件建立弦的参数方程,将它与二次曲线的方程联立后,再求解,得出交点坐标(或将弦的参数方程代入二次曲线的方程后,利用根与系数的关系,求出二根之和),再利用中点坐标公式,便得到二次曲线的弦的中点轨迹参数方程,最后消  相似文献   

5.
中点弦问题是解析几何中的重点、热点问题.解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代人圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程.但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”.下面问题中便有学生经常掉入“陷阱”.题目:已知双曲线 x~2-y~2/2-1,问是否存在直线 l,使 M(1,1)为直线 l 被双曲线所截弦 AB 的中点.若存在,求出直线 l 的方程;若不存在请说明理由.错误解法1:(点差法)设直线与双曲线两交点 A、B 的坐标分别为(x_1,y_1),(x_2,y_2),M 点的坐标为(x_M,y_M).由题设可知直  相似文献   

6.
<正>解析几何中与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题,这是一类很典型、很重要的问题.一、方法介绍解圆锥曲线的中点弦问题的常见方法有以下几种.方法 1联立消元法,即联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.方法 2点差法,即设直线与圆锥曲线的交点(弦的端点)坐标为A(x_1,y_1)、B(x_2,y_2),  相似文献   

7.
中点弦问题是解析几何中的重点、热点问题。解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代入圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程。但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”。下面问题中便有学生经常掉入“陷阱”。  相似文献   

8.
韦达定理反映了方程根与系数的关系,在平面解析几何中凡是与方程的根有关的问题,大多数可用韦达定理来解,特别是某些与中点有关的问题:如求弦长,点的坐标,轨迹方程等。一、求弦长 (1)直线截二次曲线所得的弦长,通常不必求出交点的坐标,可直接利用韦达定理解。即先求出:  相似文献   

9.
椭圆抛物线均可用"点差法"求出中点的坐标,再利用中点在其内部建立不等式,解决点线对称问题.但是双曲线的弦的中点不一定在双曲线的内部,因此鲜有文章予以解读.笔者通过一个实例剖析如何利用"点差法"解决双曲线中的"点线对称问题".  相似文献   

10.
吴梅红老师在文章依寸圆的弦中点坐标与弦的斜率关系的联想》中对圆及其有心二次曲线的弦中点坐标与弦的斜率关系作类比,得到如下性质.  相似文献   

11.
求圆锥曲线弦的中点轨迹方程,在教科书和参考书中,都是用消去参数的方法来求出其轨迹方程的。这种方法计算冗长,容易搞错。用斜率公式求弦的中点轨迹方程,只要稍加计算,就能求出其轨迹方程,学生很容易掌握。用斜率公式还能解决一些有关弦的中点的其他问题。为了叙述方便,先介绍圆锥曲线弦的斜率和弦的中点坐标间的关系。如图1所示,AB是椭圆x~2/a~2 y~2/b~2=1的弦,而M是弦AB的中点。设A、B的坐标分别为(x_1,y_1),(x_2,y_2),弦AB的中点M的坐标为(x,y),  相似文献   

12.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

13.
求二次曲线弦的中点轨迹问题,人们通常用直接法、参数法和相关点法求解,这些方法的共同特点是利用题设,建立弦的端点、中点坐标的多个方程组,通过消元得到弦中点轨迹方程,其运算量都比较大.本文根据弦中点坐标与等差数列之间的关系,给出用等差点法求二次曲线弦的中点轨迹方法,并揭示出该解法的简捷性、适用性.  相似文献   

14.
处理直线与椭圆相交问题,采用设出交点坐标,但不求出,利用韦达定理和相关坐标去把问题转化,可巧妙解题下面用一例说明.例已知点P(4,2)是直线l被椭圆x236+y92=1所截得的线段的中点,求直线l的方程.分析本题考查直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立消去y(或x),得到关于x(或y)的一元二次方程,再由根与系数之间的关系,直接求出x1+x2,x1x2(或y1+y2、y1y2)的值代入计算即得,并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法在圆锥曲线中要经常用到.本题涉及到直线被椭圆截得弦的中点问题,也可采用点差法或中点坐标公…  相似文献   

15.
1问题众所周知,圆具有如下的性质:如果.AB是圆O:x2 y2=r2的一条弦(不包括直径),M(x0,y0)是弦AB的中点,那么OM⊥AB,从而当x0y0≠0时,有kOM·kAB=-1,而,故,也就是说:知道了弦的中点坐标我们便可以直接写出此弦的斜率.  相似文献   

16.
"点差法"是圆锥曲线中的常见方法,如果能恰当使用,可以降低运算量,优化解题过程.我们对"点差法"的掌握也有境界高低之分,特举以下几例,谈谈点差法在应用中的三重境界.襛术:熟练应用,解决中点和斜率相关问题1.点差法的步骤设直线与圆锥曲线的交点坐标为A(x1,y1),B(x2,y2),将A,B坐标代入圆锥曲线方程,两式作差后分解因式,得到一个与弦的中点和斜率有关的式子,我们称之为"点差法".应用"点差法"的常见题型有:求中点弦方程、求弦中点轨迹、垂直  相似文献   

17.
巧设弦中点,妙用作差法,破解弦问题弦中点取决于弦两端点的坐标和,弦斜率取决于弦两端点的坐标差,这对两端点坐标的孪生兄弟,互帮互助,它们的直接关系孕育在设点代入、作差之中.在解决有关弦斜率、隐含弦中点的问题时,若巧设弦中点,妙用作差法,以弦中点坐标作辅助元,则往往可简捷获解.一、给出弦的斜率情况例1斜率为1的直线l与双曲线3x2-y2=1相交于不同的两点A,B,若A,B两点到直线4x-y-1=0的距离  相似文献   

18.
在解析几何中,与中点弦有关的问题历来是解几的热点内容之一.若已知弦的中点M的坐标为M(a,b),则可设弦AB的两个端点的坐标分别为A(a s,b t)、B(a-s,b-t),其独特功能是:将弦的两个端点的坐标与中点坐标  相似文献   

19.
中点弦问题就是当直线与圆锥曲线相交时,得到一条弦,进一步研究弦的中点的问题.中点弦问题是解析几何中的重点和热点问题,在高考试题中常常出现.解决圆锥曲线的中点弦问题,点差法是一个行之有效的方法,点差法顾名思义是代点作差的办法.其步骤可简要地叙述为:①设出弦的两个端点的坐标;②将端点的坐标代入圆锥曲线方程相减;③得到弦的中点坐标  相似文献   

20.
解决与圆锥曲线弦有关的问题,一般不求直线与圆锥曲线的交点,而是利用韦达定理或点差法求解.与弦中点相关的问题,更是可以先用中点的坐标表示弦所在直线的斜率,然后求弦的方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号