首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一元二次方程的根与系数之间存在着下列关系:如果ax~2+bx+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a.这就是有的参考书所讲的“韦达定理”.  相似文献   

2.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

3.
1根与系数的关系对于一元二次方程ax~2 bx c=0(a≠0)的韦达定理x_1 x_2=-b/a、x_1x_2=c/a (x_1,x_2是方程的两个根)是大家都熟悉的,那么两根之比λ和两根之差d与系数的关系又是怎样的呢?  相似文献   

4.
李彩兰 《初中生》2012,(18):21-23
正如果一元二次方程ax~2+bx+c=0(a≠0)的两个根为x_1,x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a这就是根与系数的关系,也称为韦达定理.下面以2011年中考试题为例,归纳它在中考解题中的几种典型应用,供你复习时参考.  相似文献   

5.
大家知道,一元二次方程ax~2 bx c=0(a≠0)的两根为: x_1=-b Δ~(1/2)/2a,x_2=-b-Δ~(1/2)/2a  相似文献   

6.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

7.
1基本内容1)如果ax~2 bx c=0(a≠0)的2根是x_1、x_2,那么x_1 x_2=-b/a·x_1·x_2=c/a.一元二次方程根与系数的关系叫做韦达定理.2)以2个数x_1、x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1 x_2)x x_1x_2=0.这种根与系的关系叫做韦达定理的逆定理.  相似文献   

8.
根据近些年来的中考题与综合练习题都出现|x_2-x_1|的类型,按常规方法,是由一元二次方程 ax~2 bx c=0(a≠0)的两根 x_1,x_2得:x_1 x_2=-b/a(1) x_1x_2=c/a(2)但在教学中,我发现根与系数的关系可补充下列条  相似文献   

9.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

10.
若x_1、x_2是方程ax~2+bx+c=0(a≠0)的两根,则ax_1~2+bx_1+c=0和ax_2~2+bx_2十c=0.这种把根代入原方程,即让根"回娘家"的方法在解题中有着独特的作用.  相似文献   

11.
使方程左右两边相等的未知数的值叫做方程的根。根据这一定义可知: 1.若ax_0~2 bx_0 c=0(a≠0),则x_0是方程ax~2 bx c=0的一个根; 2.若x_0是方程ax~2 bx c=0(a≠0)的一个根,则ax_0~2 bx_0 c=0。  相似文献   

12.
如果ax~2 bx c=0=(a≠0)的两个根是_x_1、x_2,那么x_1 x_2=-(b/a),x_1·x_2=c/a.这个定理是数学家韦达发现的.它揭示了一元二次方程的根与系数之间的关系.应用这个定理来求解的数学竞赛题在历年的初中数学竞赛中,频频出现.下面我们一起探讨几个问题。一、讨论方程的根的状况例1 当m是什么整数时,关于x的方程x~2-(m-1)x m 1=0的两根都是整数?  相似文献   

13.
如果x_1、x_2是一元二次方程ax~2+bx+c=0(a≠0)的两个根,由根与系数关系(即韦达定理),不解方程,可以求出下列代数式的值:  相似文献   

14.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

15.
如果 x_1、x_2是一元二次方程 ax~2+bx+c=0(a≠0)的两个根,由根与系数的关系(即韦达定理),不解方程,可以求得下列代数式的值  相似文献   

16.
设一元二次方程ax~2+bx+c=0(a≠0)有二实根x_1,x_2,易知有如下两条性质: 性质1.若a+b+c=0,则x_1=1,x_2=c/a;反之,若x_1=1,x_2=c/a,则a+b+c=0.  相似文献   

17.
一、基础知识“若实数x1、x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=-b/a,x1x2=c/a”,这一关系称之为韦达定理;其逆定理是:“若实数x1,x2满足x1+x2=-b/a,x1x2=c/a,则x1,x2是方程ax2+bx+c=a(a≠0)的两个根”,韦达定理及其逆定理在各类数学竞赛中具有广泛的应用,下面举例加以说明:二、应用举例1.用于求方程中参系数的值例1 设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等  相似文献   

18.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

19.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

20.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号