首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out- in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

2.
The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.  相似文献   

3.
The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model(the Concrete Damage Model)is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.  相似文献   

4.
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.  相似文献   

5.
Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading   总被引:1,自引:0,他引:1  
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.  相似文献   

6.
The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared. A 0.5 kg charge was detonated at a distance of 0.1 m from the 1.3 m×1.0 m×0. 1 m (thick) panels, which were simply supported and spaning 1.3m. Dynamic displacement measurements, high-speed video recording and visual examination of the panels for spall and breach were undertaken. The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels. Neither type of panel was breached using a 0.5 kg charge. The RC panel exhibited more spalling when Composition B was used. Under successive Composition B loading conditions, the RC panel was breached. In comparison the SFRPC panel was not breached. Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel.  相似文献   

7.
In order to design and retrofit a subway station to resist an internal blast,the distribution of blast loading and its effects on structures should be investigated firstly.In this paper,the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed.It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station.Then three cases of different explosive charges were considered to analyze the dynamic responses of the structure.Finally,the maximum principal stress,displacement and velocity of the columns in the three cases were obtained and discussed.It concluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation.It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer.The explicit dynamic nonlinear finite element software-ANSYS/LS-DYNA was used in this study.  相似文献   

8.
In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behav-ior of a typical subway station subjected to different internal blast loadings was analyzed. It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station. Then three cases of different explosive charges were consid-ered to analyze the dynamic responses of the structure. Finally, the maximum principal stress, dis-placement and velocity of the columns in the three cases were obtained and discussed. It con-cluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation. It’s also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer. The explicit dynamic nonlinear finite element software——ANSYS/LS-DYNA was used in this study.  相似文献   

9.
The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly.  相似文献   

10.
The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly.  相似文献   

11.
In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Three winding angles, 10°, 15°and 20°, are considered. It is shown that among ribbon vessels investigated, the center displacement of outermost ribbons of the vessel with 10°winding angle is the smallest under the same blast loading. The response of vessels loaded in inner core is local. From the center of the cylindrical shell to the bottom cover, the maximum strain gradually decreases. The ribbons are subjected to tension in the length direction and compression in the width direction. Blasting shock energy concentrates on where is close to center section of blasting. For comparison, numerical simulation of a monobloc thick-walled explosion containment vessel is also investigated. It can be found that the biggest deformation of the flat ribbon wound explosion containment vessels is bigger than that of the monobloc thick-walled explosion containment vessel in the center section of blasting under the same TNT. Numerical results are approximately in agreement with experimental ones. It is proved that the ribbon vessels have the valuable properties of " leak before burst at worst" compared with the monobloc vessels through numerical simulation.  相似文献   

12.
Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, including explosion cratering, scabbing of the backside, radial cracking induced failure and circumferential cracking induced failure. It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns. The phenomena encountered have been analyzed by the calculation with ALE method. Meanwhile, the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis. The proper thickness proportion of the soft layer is about 20% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of 7 to 3 under the condition in this paper when the total thickness of soft layer remains constant.  相似文献   

13.
Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, including explosion cratering, scabbing of the backside, radial cracking induced failure and circumferential cracking induced failure. It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns. The phenomena encountered have been analyzed by the calculation with ALE method. Meanwhile, the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis. The proper thickness proportion of the soft layer is about 2.0% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of ? to 3 under the condition in this paper when the total thickness of soft layer remains constant.  相似文献   

14.
After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse. However, only very few building design codes provide some rather general guidance, no detailed design requirement is given. Progressive collapse of the Alfred P. Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures. Recently, US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis. These two guidelines are most commonly used, but their accuracy is not known. This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads. The DoD and GSA procedures are also used to analyse the same example structure. Numerical results are compared and discussed. The accuracy and the applicability of the two design guidelines are evaluated.  相似文献   

15.
Numerical Analysis of Structural Progressive Collapse to Blast Loads   总被引:1,自引:0,他引:1  
After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse. However, only very few building design codes provide some rather general guidance, no detailed design requirement is given. Progressive collapse of the Alfred P. Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures. Recently, US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis. These two guidelines are most commonly used, but their accuracy is not known. This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads. The DoD and GSA procedures are also used to analyse the same example structure. Numerical results are compared and discussed. The accuracy and the applicability of the two design guidelines are evaluated.  相似文献   

16.
针对采用爆破施工时确定参数大多是靠工程经验,而没有进行机理分析问题;通过引入有效应力强度因子,从岩石断裂力学和爆生气准静态理论角度分析了岩石裂纹的启裂、止裂判据和扩展规律,为爆破参数的合理设计提供了理论依据。  相似文献   

17.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

18.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

19.
The tests of box-type structures under internal-blast loading are carried out. Then a numerical analysis of the test structures is done using a fully coupled numerical finite element model. The break-up process of the structure is simulated. The failure modes of the simulated structure agree well with the experimental results. The effects of the size of the reinforcing bars and the detailing of connections among the rebars in the concrete on the throw velocity of the fragments are discussed.  相似文献   

20.
针对气淬粒化装置中高炉渣颗粒的凝固行为,采用凝固熔化模型、流体体积函数模型和离散坐标辐射模型进行了三维瞬态模拟。考虑炉渣凝固过程中的物性参数变化,主要研究了颗粒的凝固过程、相界面移动速度、颗粒温度分布及周围空气速度分布。结果表明:颗粒凝固过程中固相分布不均匀,迎风面固相厚度大于背风面,这主要由迎风面空气速度比背风面快所致;固相-模糊区界面和模糊区-液相界面移动速度先增加后降低,这是由于在颗粒凝固前期导热系数的影响占主导地位、在凝固后期导热热阻的影响占主导地位;在凝固过程中,颗粒温度由外向内逐渐升高,内部温度降低缓慢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号