首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
苏教版《数学课课练》高二下册第17课时例1:已知:∠AOB=90°,过点O引∠AOB所在平面的斜线OC与OA,OB分别成45°,60°角,求二面角A-OC-B的余弦值.图1本题是在已知三个面角∠AOB,∠AOC,∠BOC的条件下,利用二面角的定义求二面角A-OC-B的余弦值.若将本题中的三个面角由特殊推广到一般,设∠AOB=θ1,∠AOC=θ2,∠BOC=θ3,二面角A-OC-B为θ,则有如下结论:cosθ=cosθs1i-nθc2o·ssθi2n·θc3osθ3.证明在OC上取一点D,使OD=1,过点D分别在面AOC,面BOC内作DE⊥OC,DF⊥OC,DE,DF分别交OA,OB于E,F,连EF,则∠EDF为二面角…  相似文献   

2.
在解圆的有关问题时,若能巧妙地作出圆的直径,将能获得简捷的解题思路,现举数例如下.例1(2005年宁波市)如图1,△ABC内接于⊙O,∠B=30°,AC=2cm.⊙O的半径为.解:连AO且延长交⊙O于D,连CD,则∠ACD=90°,∠D=∠B=30°,所以AD=2AC=2×2=4,所以⊙O的半径为2cm.例2(2005年自贡市)如图2,P是⊙O的弦CB延长线上一点,点A在⊙O上,且∠BAP=∠C.求证:PA是⊙O的切线.证明:作⊙O的直径AD,连BD,则∠C=∠D,∠ABD=90°,即∠D+∠BAD=90°,所以∠C+∠BAD=90°.因为∠C=∠PAB,所以∠BAD+∠PAB=90°,即AP⊥AD,所以PA为⊙O的切线.例3(…  相似文献   

3.
高中《立体几何》P31第9题为:求证两条平行线和同一平面所成的角相等,教学参考书上给出的证明是这样的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,∠θ_2分别是a、b与α所成的角。 求证:∠θ_1=∠θ_2。 证明:如图,在a和b上分别取点A、B,这两点在平面α的同侧,且AA_1=BB_1,连结AB和A_1B_1,∴AA_1(?)BB_1,∴四边形AA_1BB_2是平行四边形,∴AB∥A_1B_1,∵A_1B_1(?)α,∴AB∥α,设A_2、B_2分别是α的垂线AA_2、BB_2的垂足,连结A_1A_2、B_1B_2,则距离AA_2=BB_2。  相似文献   

4.
一、三余弦公式及其推论三余弦公式:如图1,PO⊥平面α于O,PA∩α=A,ABα,直线AP与AB成θ角,AP与AO成θ1角,AO与AB成θ2角,则有cosθ=cosθ1cosθ2.证明:如图1,作OB⊥AB于B,连结PB,则PB⊥AB,∠PAB=θ,∠PAO=θ1,∠OAB=θ2,设|PA|=1,则|AO|=cosθ1,|AB|=|AO|cosθ2=cosθ1cosθ2,又|AB|=cosθ,所以cosθ=  相似文献   

5.
一、应用特殊角的三角函数例 1 在△ABC中 ,∠A=1 2 0°,AB=3,AC=2 ,求 BC和 sin B。解 :过 C作 CD⊥ BA,交 BA的延长线于点 D,如图 1。∵∠ BAC=1 2 0°,∠ D=90°,∴∠ DAC=60°,∠ ACD=30°。在 Rt△ ACD中 ,AD=12 AC=1 ,CD=AC· sin∠DAC=2×sin60°=3。在 Rt△ BCD中 ,BD=BA AD=4,BC=BD2 CD2 =42 (3 ) 2 =1 9,∴ sin B=CDBC=31 9=571 9。例 2 已知 :△ ABC的边 AC=2 ,∠ A=45°,cos A、cos B是方程 4x2 - 2 (1 2 ) x m=0的二根 ,求 :(1 )∠ B的度数 ;(2 )边 AB的长。解 :(1 )∵∠ A=45°,∴ cos …  相似文献   

6.
1987年上海市中学生数学竞赛中有这样一道试题:[1] 正七边形A_1A_2A_3A_4A_5A_6A_7,内接于单位圆⊙O中,P在OA_1的延长线上,且|OP|=2,则|PA_1|·|PA_2|…|PA_7|等于多少? 下面我们把这道富于思考性的试题推广成: 定理设正n边形A_1A_2A_3…A_n内接于圆x~2+y~2=R~2,P(rcosθ,rsinθ)为平面上任意一点,则|PA_2|·|PA_2|·…·|PA_n|=(r~(2n)-2r~nR~ncosnθ+R~(2n))~(1/2)。  相似文献   

7.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

8.
在解梯形问题时,常常需要添作辅助线,其目的就是将梯形问题转化为同学们所熟悉的平行四边形和三角形来解决.下面举例说明梯形中常用的辅助线的作法郾一、作梯形的高例1如图1,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,MA=MB,∠BMC=75°,∠AMD=45°.求证:BC=CD郾证明作AE⊥BC于E郾∵AD∥BC,∴DC=AE郾∵∠AMB=180°-75°-45°=60°,MA=MB,∴△AMB为正三角形郾∴AB=BM郾又∵∠ABE=60°+15°=75°=∠BMC,∴Rt△ABE≌Rt△BMC郾∴AE=BC郾∴BC=CD郾二、作梯形的中位线例2如图2,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O…  相似文献   

9.
一、填空题1.如图1,若a∥b,∠1=72°,则∠2=.图1图22.如图2,若AB∥CD,∠ABE=110°,∠DCE=35°,则∠BEC=.3.如图3,∠1+∠2+∠3+∠4=.图3图44.如图4,A,O,B在同一直线上,∠AOC=12∠BOC+30°,OE平分∠BOC,则∠BOE=.5.如图5,直线AB,CD交于点O,OE是∠AOD的平分线,∠AOC=50°,则∠DOE的度数是.图5图6186.已知等腰三角形的两边长分别为6cm,3cm,则该等腰三角形的周长是cm.7.如图6,△ABC中,∠B=60°,∠C=40°,AD⊥BC,AE为∠BAC的平分线.则∠DAE的度数是.8.已知,如图7,把一张长方形纸片ABCD沿BD对折,使C点落在E处,BE与AD…  相似文献   

10.
六年制重点高中数学课本(试用本)《立体几何》P34第10题是: 求证:两条平行线和同一平面所成的角相等。人民教育出版社出版的教学参考书是这样给出“已知”的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,θ_2分别是a、b与α所成的角。显然这里的“a∩α=A_1,b∩α=A_2”缩小了题目的条件范围,使后来的证明漏掉如下面三个图所示的∠θ_1=∠θ_2=0°的情况。  相似文献   

11.
在斯瓦塞诺夫的三角教程中,已导出了三倍角的正弦,余弦公式: sin3α=3sinα-4sin~3α, cos3α=4cos~3α-3cosα。由这二个公式即可推出三倍角的正切公式: tg3α=(3tgα-tg~3α)/(1-3tg~2α)。下面应用这些公式来解一些习题。例1.求证tg~220°,tg~240°,tg~280°是下面方程的根: x~3-33x~2+27x-3=0 证明:显然,只要证明如下三个等式成立即可。 tg~620°-33tg~420°+27tg~220°-3=0, tg~640°-33tg~440°+27tg~240°-3=0,  相似文献   

12.
20 0 2年全国高中数学联赛加试试题一是 :如图 1 ,在△ABC中 ,∠A= 6 0°,AB>AC,点O是外心 ,两条高BE,CF交于点 H,点 M,N分别在线段 BH ,H F上 .满足 BM=CN,求 MH + NHOH 的值 .现先给出本题的两个别解 ,另再给出它的两个对偶式的值 .解法 1 连接 OB,OC,OM,ON,由 O是△ ABC的外心 ,得∠ BOC=2∠ A=1 2 0°,H是△ ABC的垂心 ,得∠ BH C=1 80°-∠ A=1 2 0°.∴∠ BOC=∠BH C,则 B,C,H ,O四点共圆 ,∴∠ OBH=∠OCH,即∠OBM=∠ OCN.又 OB=OC,BM=CN,∴△ BOM≌△CON.∴ OM=ON,∠ BOM=∠CON.于是 ,有∠…  相似文献   

13.
一种纯几何证明方法。证明过程如下: 设△ABC中各边BC,AC和AB的长分别是a、b和c,o为内切圆之圆心,D,E,F均为切点,在BC的延长线上截取CH=AF,连BO,作OK⊥BO交BC于L点,又作CK⊥BC交OK于K点,连BK,因∠BOK=∠BCK=Rt∠,故B,K,C,O四点共圆,连CO则,∠COB+∠BKC=180°,又因∠1+∠2+∠3=90°,∠3+∠AOF=90°,所以∠1+∠2=∠AOF,∠COB+∠AOF=180°,于是  相似文献   

14.
同学们在学习几何时,若能借助某些直线、射线(如角平分线、垂线)为对称轴构造对称图形,便会给解题带来极大方便,下面介绍这类几何题的思路及方法。一、以角平分线为对称轴构造图形图1例1已知,如图1,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,求证:CE=21BD.分析:因为角是轴对称图形,角平分线是对称轴,故根据对称性作出辅助线,不难发现CE=21CF,再证明BD=CF即可。证明:延长CE和BA交于点F∵∠1=∠2BE=BE∠BEC=∠BEF∴△BEC≌△BEF∴CE=EF=21CF∴∠1+∠F=∠3+∠F=90°∴∠1=∠3又∵AB=AC,∠BAD=∠CAF∴△ABD…  相似文献   

15.
一、测量问题解决测量问题 ,一方面要明确仰角、俯角、视角、坡度、坡角等名词术语 ;另一方面要分清谁是测量者与被测量者。例 1 .如图 ,在测量塔高 AB时 ,选择与塔底在同一水平面的同一直线上的 C、D两处 ,用测角仪器测得塔顶 A的仰角分别是 30°和 60°。已知测角仪器高 CE=1 .5米 ,CD= 30米 ,求塔高 AB(精确到 0 .1米 )。解 :在 Rt△ AGE和 Rt△ AGF中 ,∠ AEG=30°,∠ AFG= 60°,∴ EG=AGtg30°,FG=AGtg60°,这时 CD=EF=EG- FG=AGtg30°- AGtg60°,即 30 =AG (1tg30°-1tg60°) ,解之得 AG=1 5 3≈ 2 6.0。∴ AB=A…  相似文献   

16.
吴天辅 《云南教育》2003,(11):37-37
适当改变数学问题的题设或结论,抓住本质,不断地将“未知”转化为“已知”,使众多题目相互沟通,递推提升,从而循序渐进地解决一系列问题,对提高学生的思维能力,有重要意义。例1 如图1,在△ABC中,∠ACB=90°,CD、CE、CF分别是△ABC的角平分线,中线和高。求证:∠FCD=∠DCE。证明:∵∠ACB=90°,并且AE=EB∴CE=AE=BE=12AB∠A+∠B=90°∠B=∠BCE,∠ACD=∠BCD∵CF⊥AB∴90°-∠B=90°-∠ACF∴∠B=∠BCE=∠ACF∴∠ACD-∠ACF=∠BCD-∠BCE即:∠FCD=∠DCE例2如图2在△ABC中,∠ACB=90°,AB的垂直平分线MN与AB相…  相似文献   

17.
如何求 tan 15°?学生时常为这个问题所困扰,笔者经研究发现:利用特殊角(30°,45°和60°)之间的关系巧妙地构造几何图形,不难找到一些简捷、精当的方法,下面以含30°的直角三角形为基本图形,商榷几种求 tan 15°值的方法.基本图形:如图1,在Rt△ABC 中,∠C=90°,∠ABC=30°,AC=1.基本结论:AC:BC:AB=1:3~(1/2):2,即 AB=2,BC=3~(1/2),∠A=60°.1 以30°角为顶角,构造等腰三角形方法1:如图2,延长 BC 至 D 点,使 BD=AB,连结 AD.由作法可知,BD=AB=2,∠CAD=15°.所以CD=BD-BC=2-3~(1/2).  相似文献   

18.
教学目的: 使学生进一步熟练,巩固直角三角形的解法。 教学重点: 根据已知条件,选择适当的关系式,灵活运用基本知识,解直角三角形。 教学过程: 一、共同回忆解直角三角形的基本知识及解法。 在Rt△ABC中,∠C=90°,a、b、c分别为两直角边和斜边。(1)三边关系:a~2+b~2=c~2;(2)角与角的关系:A+B=90°;(3)边角关系:SinA=  相似文献   

19.
三角形的内角和定理及推论有着广泛的应用,现归类举例说明. 一、求角度的大小例1 在△ABC中,若∠A:∠B:∠C=1:2:3,则∠C= ——. 分析与解:依题意,不妨设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理知x+2x+3x=180°,即x=30°,故∠C=3°=90°. 例2 如图1,∠α=125°,∠1=50°,则∠β的度数是——. 分析:易求得∠2=55°,由推论2知∠β=∠1+∠2=50°+55°-105°  相似文献   

20.
董蔚 《时代数学学习》2005,(4):25-27,50
[知识要点]1 在 Rt△AB C 中,∠C= 90°,则 sin A=   ,cosA=   ,tanA=   ,cotA=      2 特殊角的三角函数值(如表1)    3 当0°<α<90°时,sinα随着角度的增大而     ;cosα随着角度的增大而      表1     α函数值函数30° 45° 60°sinαcosαtanα典型考题解析图1例 1 (2004 年大连市实验区)在 Rt△AB C 中,∠C=90°,a=1, c=4,则sinA等于(  )                   (A)1515   (B)14   (C)13   (D)154例2 (2002 年江苏省常州市)如图 1,在△ABC 中,∠ACB=90°,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号